導電性ペーストは、導電性と接着性の両方の特性を備えた特殊な機能性材料であり、新エネルギー電池、太陽光発電、エレクトロニクス、化学産業、印刷、軍事、航空などの分野で広く使用されています。導電性ペーストは主に導電相、結合相、有機キャリアから構成されており、このうち導電相は導電性ペーストの重要な材料であり、ペーストの電気的特性と成膜後の機械的特性を決定します。 一般的に使用される導電相の材料には、金属、金属酸化物、炭素材料、導電性高分子材料などが含まれます。導電相材料の比表面積、細孔径、真密度などの物理パラメータが、導電相の特性に重要な影響を与えることがわかっています。スラリーの導電性と機械的特性。したがって、ガス吸着技術に基づいて、導電相材料の比表面積、細孔径分布、真密度などの物理パラメータを正確に特徴付けることが特に重要です。さらに、これらのパラメータを正確に調整することで、ペーストの導電率を最適化し、さまざまな用途の要件を満たすことができます。 01 導電性ペーストの紹介 実際の用途に応じて、異なる種類の導電性ペーストは同じではなく、通常、異なる種類の導電性相に従って、導電性ペースト:無機導電性ペースト、有機導電性ペースト、複合導電性ペーストに分けることができます。無機導電性ペーストは、金属粉末と非金属の2種類の金属粉末に分けられ、主に金、銀、銅、錫、アルミニウムなど、非金属導電相は主に炭素材料です。導電相の有機導電性ペーストは主に導電性高分子材料であり、密度が小さく、耐食性が高く、成膜特性が良く、一定範囲の導電率を調整できるなどの特徴を持っています。複合系導電性ペーストは現在、導電性ペースト研究の重要な方向であり、その目的は、無機導電性ペーストと有機導電性ペーストの利点を組み合わせ、無機導電性相と有機材料支持体を有機的に組み合わせ、両方の利点を最大限に発揮することである。 導電性ペーストの主な機能相としての導電相は、電気経路を提供し、電気的特性を達成するために、その比表面積、細孔径、真密度、およびその他の物理的パラメータがその導電特性に大きな影響を与えます。 比表面積:比表面積のサイズは導電性に影響を与える重要な要素であり、特定の範囲内で比表面積が大きいほど、より多くの電子伝導経路が提供され、抵抗が減少し、導電性ペーストの導電性が高まります。高い導電率は、回路の効率的な導通を確保するための電子デバイスなど、多くの用途で重要です。 細孔サイズ: 細孔サイズの選択は、電子伝導とイオン拡散の両方に大きな影響を与えます。細孔サイズが小さい導電相はイオンの拡散速度を低下させることができ、これは一部のバッテリー用途では有利となり、より高い充電および放電速度が可能になります。ただし、細孔径が小さすぎると電子伝導が妨げられる場合があります。したがって、開口部のサイズは、特定のアプリケーション要件に基づいて慎重に選択する必要があります。 真の密度: 真の密度は、導電相の原子または分子がどれだけ接近しているかを反映します。通常、真密度が高いほど構造が緻密であることを示し、電子伝導が容易になります。金属や金属酸化物などのより真密度の高い材料は、高い導電性を必要とする用途によく使用されます。 したがって、研究開発プロセス中に、調製された導電性ペーストが必要な電子伝導性、機械的特性、および安定性を確実に有するように、上記の物理的パラメーターが正確に特徴付けられます。以下は、異なる導電相を含むペーストの吸着特性の特性評価に関するケーススタディの詳細な説明です。 02 金属導電性ペーストの吸着性能特性評価 金属導電性ペーストには、貴金属であるAu、Ag、Pd、Ptなど、非貴金属であるCu、Ni、Alなどが含まれます。Au導電性ペーストは優れた性能を持っていますが、一般使用のコストを削減するために高価です。銀粉末の場合、セラミック表面上の銀は強い付着力を持ち、セラミックの表面に連続的に緻密で均一な薄い層を形成することができます。銀電極の静電容量は他の電極材料よりも大きくなりますが、銀は電気的作用により、フィールドでは電子移動が発生し、導電率が低下し、寿命に影響を与えます。銅粉は他の金属系導電ペーストに比べて安価で導電性に優れていますが、銅は化学的に活性で酸化しやすく、抵抗率が上昇するという欠点があります。 一般的かつ重要な導電性ペーストとしての銅粉および銀粉は、その焼結膜抵抗、密着性、緻密性およびその他の重要なパラメーターは、粒子の形態、分散、粒子サイズ、および比表面積の特性にある程度依存します。Lv Ming 教授は、粒径が小さくなるほど比表面積が大きくなり、したがって比表面エネルギーが大きくなり、融点が低くなり、より低い焼結温度で銀ペースト中のナノ銀粉末が固化するのに役立つことを発見しました。温度に敏感な特定のシナリオで使用できます。CIQTEK の EASY-V シリーズ比表面積測定器を使用して銅および銀粉末の比表面積を測定したところ、結果はそれぞれ 2.71m 2 / gおよび 1.59m 2 /g でした(図 1 および 2)。 P/P0 選択ポイントは 0.05 ~ 0.30 の範囲、線形フィット> 0.999、切片はすべて正であり、テスト結果が正確で信頼性が高く、機器が高度に自動化されており、操作が簡単で便利であることを示しています。高いテスト効率を実現しました。操作が簡単で便利で、テスト効率が高くなります。 図1 銅粉の比表面積試験結果 図2 銀粉の比表面積試験結果 03 カーボンベースの導電性ペーストの吸着特性の特性評価 カーボン導電性ペーストは、一般にカーボンブラック、グラフェン、カーボンナノチューブなどであり、主に電池の正極材料および負極材料の導電剤として使用され、電池の重要な補助材料の1つです。導電剤により、電子が正極および負極とコレクタの間を自由に移動できるようになります。電流をスムーズに流すためには、正極材と負極材に効率よく導電剤を均一に付着させて三次元網目構造を形成する必要があります。 カーボンブラックは点接触の粒子導電剤であり、ある程度の付着力はありますが方向性がなく、ネットワーク経路を形成するのは容易ではありません。通常は比表面積の大きなカーボンブラックを使用し、粒子サイズの小さいカーボンブラックを使用します。単位体積あたりの粒子は、相互に接触してネットワーク経路を形成しやすくなります。グラフェンは面または線接触のシート状導電剤で、比表面積が大きく、負極に添加するとSEIが多く形成されやすく、リチウムイオンを消費しやすい(コーティングミクロンシリコンを除く)ため、一般的には多重度および低温性能を向上させるために正極に添加されます。カーボン ナノチューブ導電剤は繊維状で長さ方向と幅...
もっと見るそもそも、古米・新米とは何でしょうか?熟成米または古米とは、熟成のために1年以上保管された備蓄米にすぎません。一方、新米とは、新しく収穫された作物から作られるお米のことです。新米の新鮮な香りと比較すると、熟成米は軽くて味がありませんが、これは本質的に熟成米の内部の微細形態構造の変化です。 研究者らは、CIQTEK タングステンフィラメント走査電子顕微鏡 SEM3100 を使用して新米と古米を分析しました。ミクロの世界でどう違うのか見てみましょう! CIQTEK タングステンフィラメント走査型電子顕微鏡 SEM3100 図1 新米と古米の断面破断形態 まず、イネ胚乳の微細構造をSEM3100で観察した。図1より、新米の胚乳細胞はでんぷん粒を包み込んだ細長い多角柱状の細胞であり、胚乳細胞は胚乳の中心を同心円として放射状に扇状に配列しており、中心の胚乳細胞は外側の細胞に比べて小さかった。新米の放射状扇形胚乳構造は古米に比べて顕著であった。 図2 新米と古米の中央胚乳の微細構造形態 さらにイネの中心部胚乳組織を拡大して観察したところ、熟成米では中心部の胚乳細胞がより破壊され、デンプン粒が露出し、放射状に胚乳細胞がぼやけて配列していることが分かりました。 図3 新米と古米の表面のタンパク質膜の微細構造形態 SEM3100の高解像度イメージングの利点を利用して、胚乳細胞表面のタンパク質膜を高倍率で観察しました。図3からわかるように、新米の表面にはタンパク質の膜が観察できましたが、古米の表面のタンパク質の膜は破れ、反りの度合いが異なり、内部のでんぷん粒が比較的はっきりと露出しています。表面タンパク質膜の厚さの減少による形状。 図4 新米の胚乳澱粉粒の微細構造 イネ胚乳細胞には、単一および複合アミロプラストが含まれています。単粒子アミロプラストは結晶性多面体であり、多くの場合、鈍い角と周囲のアミロプラストとの明らかな隙間を持つ単粒子の形をしており、主に直鎖および分枝鎖アミロースによって形成される結晶領域と非晶質領域を含みます。複雑な粒子のアミロプラストは角張った形状で、密に配置され、周囲のアミロプラストとしっかりと結合しています。高品質の米のでんぷん粒子は主に複雑な粒子として存在することが研究によって示されています[3]。新米の胚乳細胞を観察すると、図4に示すように、でんぷん粒はほとんどが複合粒の形で存在していることが分かり
もっと見る一般的に使用されている錠剤やビタミン剤の表面に薄いコーティングが施されていることに気づいたことがありますか? これはステアリン酸マグネシウムから作られた添加物で、通常は潤滑剤として医薬品に添加されます。では、なぜこの物質が医薬品に添加されるのでしょうか? ステアリン酸マグネシウムとは何ですか? ステアリン酸マグネシウムは、医薬品賦形剤として広く使用されています。ステアリン酸マグネシウム(C36H70MgO4)とパルミチン酸マグネシウム(C32H62MgO4)を主成分として配合した、白色微粒子のノンサンディングパウダーで、肌に接触するとツルツルとした感触があります。ステアリン酸マグネシウムは、医薬品製造で最も一般的に使用される潤滑剤の 1 つであり、優れた抗付着性、流動性向上、および潤滑性を備えています。医薬品錠剤の製造にステアリン酸マグネシウムを添加すると、錠剤と打錠機のダイ間の摩擦が効果的に低減され、医薬品打錠機の打錠力が大幅に低減され、医薬品の一貫性と品質管理が向上します。 ステアリン酸マグネシウム インターネットからの画像 潤滑剤としてのステアリン酸マグネシウムの重要な特性はその比表面積であり、比表面積が大きいほど極性が高く、付着力が大きくなり、混合プロセス中に粒子表面に均一に分布しやすくなります。潤滑性が優れているほど。CIQTEK が自社開発した静的体積法に特化した表面および細孔径分析装置 V-Sorb X800 シリーズは、ステアリン酸マグネシウムおよびその他の材料のガス吸着をテストし、材料の BET 表面積を分析するために使用できます。この機器は操作が簡単で、正確で、高度に自動化されています。 ステアリン酸マグネシウムに対する比表面積の影響 研究では、潤滑剤の表面状態、粒子サイズ、表面積のサイズ、結晶の構造など、潤滑剤の物理的特性も医薬品に大きな影響を与える可能性があることが指摘されています。ステアリン酸マグネシウムは、粉砕、乾燥、保管すると元の物理的特性が変化し、潤滑機能に影響を与える可能性があります。 良質なステアリン酸マグネシウムは、低剪断層状構造 [1] を持ち、薬剤の有効成分やその他の賦形剤と適切に混合することで、圧縮された粉末と型の壁の間に潤滑を与え、粉末と型の間の付着を防ぐことができます。ステアリン酸マグネシウムの比表面積が大きいほど、混合プロセス中にステアリン酸マグネシウムを粒子の表
もっと見るセラミック材料は、高融点、高硬度、高耐摩耗性、耐酸化性などの一連の特性を備えており、電子産業、自動車産業、繊維、化学産業、航空宇宙などの国民経済のさまざまな分野で広く使用されています。 。 セラミック材料の物理的特性は、SEM の重要な応用分野である微細構造に大きく依存します。 セラミックスとは何ですか? セラミック材料は、天然または合成化合物を成形および高温焼結して製造される無機非金属材料の一種であり、一般セラミック材料と特殊セラミック材料に分類できます。 特殊セラミック材料は、酸化物セラミック、窒化物セラミック、炭化物セラミック、ホウ化物セラミック、ケイ化物セラミックなどの化学組成に応じて分類できます。セラミックスはその特性や用途に応じて構造用セラミックスと機能性セラミックスに分けられます。 図1 窒化ホウ素セラミックスの顕微鏡形態 SEM はセラミック材料の特性の研究に役立ちます 社会と科学技術の継続的な発展に伴い、人々の材料に対する要求はますます高まっており、セラミックスのさまざまな物理的および化学的特性についてのより深い理解が必要となっています。セラミック材料の物性はその微細構造に大きく依存し[1]、SEM画像はその高解像度、広い倍率調整範囲、立体的な画像化が可能なため、セラミック材料やその他の研究分野で広く使用されています。CIQTEK 電界放射型走査電子顕微鏡 SEM5000 を使用すると、セラミック材料および関連製品の微細構造を簡単に観察でき、さらに、X 線エネルギー分光計を使用して材料の元素組成を迅速に決定できます。 電子セラミックスの研究における SEM の応用特殊セラミックス業界の最大の最終用途市場はエレクトロニクス業界であり、そこではチタン酸バリウム (BaTiO3) が積層セラミック コンデンサ (MLCC)、サーミスタ (PTC)、およびその他の電子機器に広く使用されています。その高い誘電率、優れた強誘電性と圧電性、耐電圧性と絶縁性により、コンポーネントに使用されています[2]。電子情報産業の急速な発展に伴い、チタン酸バリウムの需要が増加しており、電子部品の小型化、小型化が進んでおり、それに伴いチタン酸バリウムに対する要求も高まっています。研究者は、焼結温度、雰囲気、ドーピング、その他の準備プロセスを変更することで特性を調整することがよくあります。それでも重要なのは、製造プロセスの変化が材料の微細
もっと見る金属材料とは、光沢、延性、易伝導性、熱伝導などの特性を備えた材料です。一般に、鉄金属と非鉄金属の 2 種類に分類されます。鉄金属には、鉄、クロム、マンガンなどが含まれます [1]。中でも鉄鋼は基本的な構造材料であり、「産業の骨格」と呼ばれています。これまでのところ、鉄鋼は依然として工業用原材料の構成の大半を占めています。多くの鉄鋼会社や研究機関は、SEM の独自の利点を利用して生産上の問題を解決し、新製品の開発を支援しています。 対応するアクセサリを備えた SEM は、鉄鋼および冶金業界が研究を実施し、生産プロセスの問題を特定するためのお気に入りのツールとなっています。SEM の解像度と自動化の向上に伴い、材料の分析と特性評価における SEM の応用はますます広まっています [2]。 故障解析は、近年、学者や企業を研究するために軍事企業によって普及されている新しい分野です [3]。金属部品の故障は、軽微な場合にはワークの性能低下につながり、重大な場合には生命の安全に関わる事故につながる可能性があります。故障解析によって故障原因を特定し、効果的な改善策を提案することは、プロジェクトを安全に運営するために不可欠なステップです。したがって、走査型電子顕微鏡の利点を最大限に活用することは、金属材料産業の発展に大きく貢献するものと考えられます。 01 金属の引張破壊のSEM観察 破壊は常に金属組織の最も弱い部分で発生し、破壊の全過程に関する多くの貴重な情報が記録されます。したがって、破壊の研究では破壊の観察と研究が重視されてきました。破壊の形態学的解析は、破壊の原因、破壊の性質、破壊のモードなど、材料の破壊につながるいくつかの基本的な問題を研究するために使用されます 。材料の破壊メカニズムを詳しく研究する場合、通常、破面上のマクロ領域の組成が分析されます。破壊解析は現在、金属部品の故障解析にとって重要なツールとなっています。 図 1. CIQTEK SEM3100 の引張破壊形態 破壊の性質により、 脆性破壊と延性破壊に大別されます。脆性破壊の破面は通常、引張応力に対して垂直であり、巨視的な観点から見ると、脆性破壊は光沢のある結晶質の明るい表面で構成されます。一方、延性骨折では通常、骨折部に小さな隆起があり、繊維状になっています。 破壊解析の実験的基礎は、破壊面の巨視的形態と微細構造特性を直接観察して解析することです。多くの場合、亀裂の性質、亀裂の開始位置、亀裂の進展経路は肉眼的観察を使用して判断できます。 しかし、骨折源付近を詳細に調査し、骨折原因や骨折メカニズムを解析するには顕微鏡観察が必要です。また、破壊は凹凸があり粗い表面であるため、破壊の観察に使用される顕微鏡には、最大の被写界深度、可能な限り広い倍率範囲、および高解像度が必要です。これらすべてのニーズにより、破壊解析の分野で SEM が広く応用されるようになりました。 図 1 は、低倍率の肉眼観察と高倍率の微細構造観察による 3 つの引張破壊サンプルを示しています。サンプル B 肉眼的には繊維形態はありません (図 B)、微細構造には強靭な巣は現れず、これは脆性破壊です。サンプル C の巨視的亀裂は光沢のあるファセットで構成されています。したがって、上記の引張破壊はすべて脆性破壊です。 02 鋼中の介在物のSEM観察 鋼の性能は主に鋼の化学組成と組織によって決まります。鋼中の介在物は主に酸化物、硫化物、窒化物などの非金属化合物の形で存在し、鋼の不均一な組織を引き起こします。さらに、それらの形状、化学組成、および物理的要因は、鋼の冷間および熱間加工性を低下させるだけでなく、材料の機械的特性にも影響を与えます [4]。非金属介在物の組成、数、形状、分布は、鋼の強度、塑性、靱性、耐疲労性、耐食性などの特性に大きな影響を与えます。したがって、非金属介在物は鋼材の金属組織検査において必須の項目となります。鋼中の介在物の挙動を研究し、対応する技術を使用して鋼中の介在物のさらなる形成を防ぎ、鋼中にすでに存在する介在物を減らすことは、高純度鋼の製造と鋼の性能の向上にとって非常に重要です。 。 図 2. 内包物の形態 図 3. TiN-Al2O3 複合介在物のエネルギースペクトル表面分析 図2、図3の介在物分析では、走査型電子顕微鏡で介在物を観察し、エネルギー分光法で電気純鉄に含まれる介在物を分析した結果、純鉄に含まれる介在物は酸化物であることが分かりました。 、窒化物および複合介在物。 SEM3100 に付属の分析ソフトウェアには、サンプル上で直接、または画像上であらゆる距離と長さを直接測定するための強力な機能が備わっています。 たとえば、上記の場合の電気純鉄介在物の長さを測定すると、Al2O3 介在物の平均サイズは約 3 μm、TiN および AlN のサイズは 5 μm 以内、複合クラスのサイズであることがわかります。介在物は8μmを超えません。これらの小さな介在物は、電気純鉄内の磁区を固定する役割を果たし、最終的な磁気特性に影響を与えます。 酸化物介在物 Al2O3 の原因は、製鋼時の脱酸生成物や連続鋳造プロセスの二次酸化物である可能性があり、鋼材の形態は大部分が球形で、一部が不規則な形をしています。介在物の形態は、その成分と鋼中で起こる一連の物理化学反応に関連しています。介在物を観察する際には、介在物の形態や組成だけでなく、介在物の大きさや分布にも注意を払う必要があり、介在物のレベルを総合的に判断するには多方面からの統計が必要です。 SEMは、ワークの割れの原因となる介在物など、介在物を個別に観察・解析し、故障解析を行うのに有利です。亀裂の発生源には大きな粒子の介在物が見られることが多く、介在物のサイズ、組成、量、形状を研究することが重要です。この分析を使用して、ワークピースの故障の原因を特定できます。 03 鋼中の有害な析出相を検出するための SEM 析出相は、飽和固溶体の温度が低下する際に析出する相、あるいは固溶体処理後に得られる過飽和固溶体の熟成中に析出する相である。相対時効プロセスは固体状態の相変化プロセスであり、過飽和固溶体沈殿脱溶媒和および核生成成長プロセスからの第 2 相粒子です。析出相は鋼において非常に重要な役割を果たしており、その強度、靱性、可塑性、疲労特性、その他多くの重要な物理的および化学的特性に重要な影響を与えます。鋼の析出相を合理的に制御すると、鋼の特性を強化できます。熱処理の温度や時間の管理が適切でないと、脆性破壊や腐食し易さなどの金属特性の急激な低下につながります。 図 4. CIQTEK SEM3100 電気技術的に純鉄の析出位相後方...
もっと見る科学研究において、花粉は幅広い用途があります。中国科学院南京地質古生物学研究所のリミ・マオ博士によると、土壌に沈着したさまざまな花粉を抽出して分析することで、それぞれがどの親植物から来たものかを理解し、環境や気候を推測することが可能になるという。その時。植物研究の分野では、花粉は主に体系的な分類法に顕微鏡的な参照証拠を提供します。さらに興味深いのは、花粉の証拠は犯罪捜査事件にも応用できることです。法医花粉学は、容疑者の同行衣服や犯罪現場に付着した花粉スペクトルの証拠を使用することで、犯罪の事実を効果的に裏付けることができます。地質研究の分野では、花粉は植生史、過去の生態学、気候変動研究の再構築に広く使用されています。人類の初期の農耕文明や生息地を探る考古学研究では、花粉は科学者が人類による初期の植物栽培の歴史、どのような食用作物が栽培されていたかなどを理解するのに役立ちます。 図1 3D花粉モデル写真(リミ・マオ博士撮影、オリバー・ウィルソン博士開発製品) 花粉の大きさは数ミクロンから200ミクロン以上までさまざまですが、これは目視による観察の解像度を超えており、観察や研究には顕微鏡の使用が必要です。花粉には、サイズ、形状、壁構造、装飾など、さまざまな形態があります。花粉の装飾は、花粉を識別し区別するための重要な基礎の 1 つです。しかし、光学生物顕微鏡の分解能には物理的な限界があり、花粉の装飾の違いを正確に観察することは難しく、一部の小さな花粉の装飾さえも観察することができません。したがって、科学者は、花粉の形態学的特徴の鮮明な画像を取得するために、高解像度と深い被写界深度を備えた走査型電子顕微鏡 (SEM) を使用する必要があります。化石花粉の研究では、その花粉が属する特定の植物を特定することができ、当時の植生、環境、気候情報をより正確に理解することができます。 花粉の微細構造 最近、 研究者は CIQTEK タングステン フィラメント SEM3100 と CIQTEK フィールド エミッション SEM5000 を使用して、さまざまな花粉を顕微鏡で観察しました。 図2 CIQTEKタングステンフィラメントSEM3100とフィールドエミッションSEM5000 1. 桜 花粉は球形~長楕円形。3 つの細孔溝 (花粉が処理されていない場合、細孔は明白ではありません) により、溝は両方の極に到達します。縞模様の装飾が施された外壁。 2. チャイニ
もっと見る膨張可能な微小球は、ガスが封入された小さな熱可塑性球であり、熱可塑性ポリマーのシェルと封入された液体アルカンガスで構成されています。微小球が加熱されると、シェルが軟化して内部の気圧が劇的に上昇し、微小球が元の体積の 60 倍まで劇的に膨張し、軽量の充填剤と発泡剤の 2 つの機能が得られます。発泡性微小球は軽量フィラーとして、非常に低密度の製品の重量を大幅に軽減できるため、その密度測定は非常に重要です。 図 1 膨張可能な微小球 EASY-G 1330シリーズ真密度試験機の原理 EASY-G 1330 シリーズ真密度試験機はアルキメデスの原理に基づいており、プローブとして小分子径ガスを使用し、理想ガス状態方程式 PV=nRT を使用して、特定の温度および圧力条件下で材料から放出されるガスの体積を計算します。材料の真の密度を決定するために。分子径の小さいガスは窒素やヘリウムと同様に使用できます。ヘリウムは分子径が最も小さく、試料と吸着反応しにくい安定した不活性ガスであるため、置換ガスとしては一般にヘリウムが推奨されます。 EASY-G 1330シリーズ真密度試験機のメリット EASY-G 1330 シリーズ真密度試験機はプローブとしてガスを使用するため、試験サンプルに損傷を与えることなく、サンプルを直接リサイクルできます。また、試験工程においてガスがサンプルと反応せず、機器の腐食を引き起こすことがないため、使用工程の安全率が高い。さらに、ガスは拡散しやすく、透過性が良く、安定性が良いという特徴があり、材料の内部細孔に素早く浸透し、試験結果がより正確になります。 実験手順 ①暖機運転:シリンダの主弁と減圧テーブルを開き、30分以上前に電源スイッチを入れます。ガス減圧テーブルの出力圧力:0.4±0.02MPa。 ②装置の校正:実験を開始する前に、標準鋼球を使用して装置を校正し、装置のすべてのパイプラインでテストされた鋼球の体積が標準値以内であることを確認してから実験を開始します。 ③サンプルチューブの体積の決定:空のサンプルチューブを装置のキャビティに取り付けて締め、ソフトウェアをセットアップし、サンプルチューブの体積を決定し、実験終了時に対応するサンプルチューブの体積を記録します。 ④サンプル秤量:試験誤差を減らすために、できるだけ多くのサンプルを秤量する必要があります。各試験では、サンプルをサンプルチューブ容積の約3/4まで秤量し、空のチュー
もっと見る近年、世界的な原油価格の高騰により、太陽光発電(PV)に代表される再生可能エネルギー産業が注目を集めています。太陽光発電の中核コンポーネントとして、太陽電池の開発見通しと市場価値が注目されています。世界の電池市場では、太陽電池が約 27% を占めています[1]。 走査型電子顕微鏡は、太陽電池の製造プロセスと関連研究の強化に大きな役割を果たしています。 PV セルは、太陽エネルギーを電気エネルギーに直接変換する光電子半導体の薄いシートです。現在商業的に量産されている太陽電池は主にシリコン電池であり、単結晶シリコン電池、多結晶シリコン電池、アモルファスシリコン電池に分けられる。 太陽電池効率向上のための表面テクスチャリング方法 実際の太陽電池の製造プロセスでは、エネルギー変換効率をさらに向上させるために、通常、セルの表面に特殊なテクスチャ構造が作成され、このようなセルは「無反射」セルと呼ばれます。具体的には、これらの太陽電池の表面のテクスチャ構造は、シリコンウェーハの表面での照射光の反射回数を増やすことで光の吸収を向上させます。これにより、表面の反射率が低下するだけでなく、内部に光トラップが生成されます。これにより、太陽電池の変換効率が大幅に向上します。これは、既存のシリコン太陽電池の効率を向上させ、コストを削減するために重要です[2]。 平面とピラミッド構造面の比較 ピラミッド構造のシリコンウェーハは、平面に比べて入射光の反射光が直接空気中に反射するよりもウェーハ表面で再度作用する確率が高く、散乱光の数が増加します。そして構造の表面で反射され、より多くの光子が吸収されるようになり、より多くの電子正孔ペアが生成されます。 ピラミッド構造に当たる光のさまざまな入射角の光路 表面テクスチャリングに一般的に使用される方法には、化学エッチング、反応性イオン エッチング、フォトリソグラフィー、機械的溝入れなどがあります。中でも化学エッチング法は、低コスト、生産性が高く、方法が簡単であるため、産業界で広く用いられている[3] 。単結晶シリコン太陽電池の場合、結晶シリコンの異なる結晶層上でアルカリ溶液によって生成される異方性エッチングは、通常、結晶シリコンの異なる結晶層上でのアルカリ溶液の異方性の結果である「ピラミッド」形成と同様の構造を形成するために使用されます。ピラミ
もっと見る