2D 磁性材料の新たな地平 - 量子ダイヤモンド NV センター AFM アプリケーション
何世紀にもわたって、人類は磁気とそれに関連する現象を休むことなく研究してきました。電磁気学と量子力学の初期の頃、磁石が鉄に引き寄せられることや、鳥、魚、昆虫が何千マイルも離れた目的地間を移動する能力を人間が想像することは困難でした。これは同じ驚くべき興味深い現象です。磁気の原点。これらの磁気特性は、電子と同様に普及している素粒子の移動する電荷とスピンに由来します。 二次元磁性材料は非常に興味深い研究のホットスポットとなっており、スピントロニクスデバイスの開発に新たな方向性を切り開き、新しい光電子デバイスやスピントロニクスデバイスに重要な用途をもたらします。最近では、『Physics Letters 2021』第 12 号でも 2 次元磁性材料の特集を開始し、理論と実験における 2 次元磁性材料の進歩をさまざまな視点から解説しています。 わずか数原子の厚さの二次元磁性材料は、非常に小さなシリコンエレクトロニクスの基板として使用できます。この驚くべき材料は、ファンデルワールス力、つまり分子間力によって積み重ねられた極薄層のペアでできており、層内の原子は化学結合によって結合されています。原子の厚さしかありませんが、磁気、電気、力学、光学の点で物理的および化学的特性を保持しています。 二次元磁性材料 画像は https://phys.org/news/2018-10-flexy- flat-function-magnets.html から参照 興味深いたとえを使用すると、2 次元磁性材料内の各電子は、N 極と S 極を備えた小さなコンパスのようなもので、これらの「コンパスの針」の方向が磁化の強さを決定します。これらの極小の「コンパスの針」が自発的に整列すると、磁気シーケンスが物質の基本相を構成し、発電機やモーター、磁気抵抗メモリ、光バリアなどの多くの機能デバイスの作製が可能になります。この驚くべき特性により、二次元磁性材料も注目されています。集積回路の製造プロセスは現在改善されつつありますが、デバイスが縮小しているため、すでに量子効果によって制限されています。マイクロエレクトロニクス産業は信頼性の低さや消費電力の高さなどのボトルネックに直面しており、50年近く続いてきたムーアの法則も困難に直面している(ムーアの法則:集積回路上に収容できるトランジスタの数は約2倍になる) 18 か月ごと)。将来的に二次元磁性材料が磁気センサー、ランダムメモリ、その他の新しいスピントロニクスデバイスの分野で使用できれば、集積回路の性能のボトルネックを打破できる可能性があります。 磁性ファンデルワールス結晶が特別な磁気電気効果を持っていることはすでに知られているため、定量的な磁気研究は二次元磁性材料の研究において不可欠なステップです。しかし、そのような磁石のナノスケールでの磁気応答に関する定量的な実験研究はまだ非常に不足しています。いくつかの既存の研究では、ミクロンスケールでの結晶磁性の検出の実現が報告されていますが、これらの技術はまだ磁化に関する定量的な情報を提供していないだけでなく、極薄サンプルの妨げとなる磁気信号と干渉する傾向が非常に高いです。したがって、ナノスケールで材料の磁気特性を調べるためには、検出技術の更新が非常に緊急の課題となります。 この課題に対処するために、CIQTEK は新しい 量子精密測定である量子ダイヤモンド原子間力顕微鏡 (QDAFM)、ダイヤモンド NV センターおよび AFM 走査イメージング技術に基づく走査型 NV 顕微鏡を提供します。ダイヤモンドの窒素空孔 (NV) 中心欠陥のスピンを量子操作して読み出すことにより、磁気特性の定量的非破壊イメージングを実現できます。ナノメートルスケールでの高い空間分解能と個々のスピンの超高検出感度を備えているため、ファンデルワールス磁石の重要な磁気特性を定量的に検出し、その磁化、局所欠陥、磁気の高空間分解能磁気イメージングを実行することができます。ドメイン。非侵襲的であり、広い温度領域をカバーし、広い磁場測定範囲をカバーするという独自の利点があります。生物学や医学の研究分野だけでなく、量子科学、化学、材料科学にも幅広い用途があります。 二次元ヨウ化クロムの磁化図 画像はProbing Magnetism in 2D Materials at the nanoscale withsingle-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)より引用 以下では、 ナノ磁気共鳴イメージング、超伝導磁気共鳴イメージング、細胞のその場イメージング、およびトポロジカル磁気構造の特性評価におけるQDAFM の具体的なアプリケーションを紹介します。 CIQTEK 量子ダイヤモンド原子間力顕微鏡 (常温バージョンと極低温バージョン) 01 ナノ磁気共鳴イメージング 磁性材料の場合、その静的スピン分布を決定することは物性物理学の重要な問題であり、新しい磁気デバイスの研究の鍵となります。QDAFM は、非侵襲性、広い温度領域のカバー、広い磁場測定範囲などの独自の利点を備えた高空間分解能の磁気イメージングを可能にする新しい方法を提供します。 ブロック型磁壁イメージング 画像はTetienne、JPet al.から参照 極薄強磁性体の磁壁の性質は、走査ナノ磁気測定によって明らかになりました。ネイチャーコミュニケーションズ6, 6733(2015) 02 超電導磁気共鳴イメージング 超伝導体とその渦のミクロスケールの研究は、超伝導のメカニズムを理解するための重要な情報を提供します。低温で動作する QDAFM を使用すると、超伝導体の磁気渦の定量的イメージング研究を実行でき、多数の低温凝縮物質系の磁気測定に拡張できます。 単一磁気渦のスプリアス場の定量的イメージング 画像は Thiel, L. et al. 極低温量子磁力計を使用した定量的ナノスケール渦イメージングから参照されました。ネイチャー ナノテクノロジー 11,677-681 (2016)。 03 細胞 in situ イメージング 細胞内のその場でのナノスケール分子イメージングの達成は、生物学研究にとって重要なツールです。数あるイメージング技術の中でも、試料体内のスピン分布の画像を非破壊で迅速に取得できる磁気共鳴イメージングは、いくつかの科学分野で広く使用されています。 特に臨床医学においては、生体への侵襲性がほとんどないため、病気のメカニズムの研究、診断、治療に重要な役割を果たしています。しかし、従来の磁気共鳴イメージング技術は、ミクロンを超える空間分解能の限界を持つセンサーとして磁気誘導...