再結晶研究における TEM と EBSD の応用
R結晶化Pプロセスとは何ですか? 再結晶化は、塑性変形後の材料の微細構造の回復を伴う材料科学における重要な現象です。このプロセスは、材料特性を理解し、加工技術を最適化するために非常に重要です。[9] 15 R 16 結晶化のメカニズムと 13 C 14 分解 再結晶化プロセスは通常、熱処理または熱変形によって引き起こされ、変形中に欠陥が発生した後の材料の自然回復が含まれます。転位や粒界などの欠陥は、転位の再配列と消滅を通じて高温での系自由エネルギーの減少を促進し、新しい粒構造の形成につながります。 再結晶化は、静的再結晶化 (SRX) と動的再結晶化 (DRX) に分類できます。 SRX はアニーリング プロセス中に発生しますが、DRX は熱変形中に発生します。さらに、再結晶化は、連続動的再結晶化 (CDRX)、不連続動的再結晶化 (DDRX)、幾何学的動的再結晶化 (GDRX)、メタダイナミック再結晶化 (MDRX) などの特定のメカニズムに基づいてさらに細分化できます。これらの分類は厳密に定義されておらず、研究者によって異なる解釈がある可能性があります[23]。 再結晶に影響を与える要因 再結晶プロセスは、積層欠陥エネルギー (γSFE)、初期結晶粒径、熱処理条件、第 2 相粒子などのさまざまな要因の影響を受けます。積層欠陥エネルギーの大きさは転位破壊と移動度を決定し、それによって再結晶率に影響を与えます。初期結晶粒径が小さいことと、高温および低い歪み速度などの適切な熱処理条件により、再結晶化が促進されます。第二相粒子は粒界の動きを妨げることにより、再結晶化プロセスに大きな影響を与える可能性があります。[31] 画像技術の応用 EBSD および TEM は、再結晶研究で使用される 2 つの古典的なイメージング技術です。 EBSD は、DefRex マップを使用して再結晶粒の分布と割合を分析しますが、解像度の制限により精度の問題が生じる可能性があります。一方、TEM は転位などの材料の下部構造を直接観察し、再結晶の研究により直観的な視点を提供します [43]。 再結晶研究におけるEBSDの応用 EBSD は、粒界を観察することによって粒子が再結晶化を受けたかどうかを判断するために使用されます。たとえば、鍛造 TNM 合金の DefRex マップでは、高角度の境界に囲まれた粒子は通常、再結晶粒子と見なされます。この技術は、結晶粒の配向と粒界の種類に関する詳細な情報を提供し、再結晶中の微細構造の変化の理解を助けます [51]。 鍛造TiAl合金のBC+GB(粒界)マップ 再結晶研究における TEM の応用 TEM