もっと詳しく知る
伝言を残す
提出する
アプリケーション
金属材料の特性評価における走査型電子顕微鏡の適用
金属材料の特性評価における走査型電子顕微鏡の適用
金属材料は、現代の産業で不可欠な役割を果たしており、そのパフォーマンスは製品の品​​質とサービス生活に直接影響します。 材料科学の継続的な開発により、金属材料の顕微鏡構造と組成分析には、より高い要件が提案されています。 高度な特性化ツールとして、走査型電子顕微鏡(SEM) 高解像度の表面形態情報を提供し、元素組成決定のための分光分析技術と組み合わせることができ、金属材料研究の重要なツールになります。 この記事は、金属材料の特性評価におけるSEMテクノロジーの適用について議論し、関連する研究の参照とガイダンスを提供することを目的としています。 電子顕微鏡の基本原理(SEM)走査型電子顕微鏡の動作原理は、電子ビームとサンプル表面との間の相互作用に基づいています。 高エネルギー電子ビームがサンプル表面をスキャンすると、二次電子、後方散乱電子、特性X線などを含むさまざまな信号が生成されます。これらの信号は、対応する検出器によって収集され、サンプルの表面形態画像または元素分布マップを形成するために処理されます。 金属材料のSEMサンプル調製微細構造分析: Ciqtek EMは、研究者が観察するのに役立つ高解像度の画像を提供します 金属の微細構造と、穀物のサイズ、形状、位相などの複合材料の微細構造を分析する 分布、および欠陥(たとえば、亀裂、および包含)。 これは、関係を理解するために重要です 材料特性と処理技術の間。 αβチタン合金熱の影響を受けたゾーンは、溶接接合部で最も脆弱な領域です。 微細構造の変化を研究します 溶接領域の特性は、溶接の問題を解決し、溶接品質を改善するために非常に重要です。 構成分析:EDSまたはWDSシステムが装備されている、 ciqtek sem 定性的と 定量的元素組成分析。 これは、分布を研究するために非常に重要です 合金要素のパターンと材料特性への影響。 edsによるエレメンタルライン分析SEMとEDS分析を組み合わせることにより、 組成の変化と 不純物の要素分布溶接領域を観察できます。 障害分析: 骨折、腐食、その他の形態の損傷などの故障後、金属で発生します 複合材料Ciqtek SEMは、メカニズム障害を分析するための重要なツールです。 調べることによって 骨折表面、腐食生成物など、故障の根本原因を識別し、提供することができます 材料の信頼性と寿命を改善するための洞察。 2A12アルミニウム合金成分の故障2A12アルミニウム合金はさまざまな降水段階を示します。 形態学
結晶の向きと特性の研究における電子顕微鏡とEBSDの適用
結晶の向きと特性の研究における電子顕微鏡とEBSDの適用
結晶の定義と特性: 結晶は、3次元空間における粒子(分子、原子、イオン)の通常および周期的な配置によって形成される材料です。結晶は、単結晶と多結晶に分類できます。結晶の形成には、粒子が通常のパターンで自分自身を配置するプロセスが含まれます。粒子の定期的な配置により、結晶内の構造化されたフレームワークが生じ、特定の格子構造を持つ結晶を固体にします。結晶は、定期的な幾何学的形状を示し、固定融点を持ち、機械的強度、熱伝導率、熱膨張などの異方性特性を示します。結晶は自然界に豊富であり、自然に見られるほとんどの固体材料は結晶です。ガス、液体、およびアモルファス材料は、適切な条件下で結晶に変換することもできます。 X線回折は、材料が結晶であるかどうかを識別するために一般的に使用されます。 結晶の融点と分布: 結晶中の原子の定期的な配置は、固定融点と固化点に寄与します。これは、アモルファス材料と比較した結晶の際立った特徴です。結晶は、塩や砂糖などの一般的な物質、地球の地殻を構成するミネラル、金属、半導体材料まで、自然界の形態が多様です。 電子M icroscopes およびEBSD 技術は、異なる条件下で結晶の安定性を理解し、材料の選択と用途の科学的洞察を提供するのに役立ちます。 単結晶と多結晶: 単結晶は、結晶全体で原子配置が一貫している連続結晶格子で構成され、結晶の異方性特性をもたらします。単結晶は、半導体業界の統合回路の基礎材料として使用されるシリコン単結晶など、特定の用途に最適です。 一方、多結晶は、方向が異なる複数の穀物で構成されています。個々の穀物は同じ結晶格子を持っていますが、その向きはランダムであり、巨視的な異方性のない多結晶をもたらします。ただし、特定の処理条件下では、多結晶の粒子は特定の方向に沿って優先的に整列し、結晶学的なテクスチャとして知られている優先方向を形成できます。結晶学的なテクスチャは、特定の方向に材料の特性を強化することができます。たとえば、金属処理におけるテクスチャの制御は、材料の延性または強度を改善することができます。 GoldTest Labなどの分析研究所は、単結晶と多結晶の正確な分析とテストを提供し、材料用途向けの信頼できる洞察を提供します。 クリスタル向けの重要性: 結晶の向きの分析は、材料特性を理解するために重要です。結晶の向きは、サンプル座標系とサンプルの肉眼的座標系との関係の決定を含
Natureで公開! CIQTEK PULSE EPRは、ビットパフォーマンスを強化するための新しい方法の発見を後押しします
Natureで公開! CIQTEK PULSE EPRは、ビットパフォーマンスを強化するための新しい方法の発見を後押しします
最近、ウェストレイク大学のSun Leiが率いる研究チームによる「スピン格子緩和のフォノニック変調」というタイトルの研究論文が、Nature Communicationsで発行されました。 図1:MQFSのスピン格子緩和の水素結合ネットワークとフォノン変調 チームは ciqtek パルス e lectron p aramaggenety r esonance(epr) s を使用しました pectroscopy X-Band EPR100 および W-Band EPR-W900 は、セミキノンラジカルを含む2つの分子キットフレームワーク材料を特徴付けます。 図2:MGHOTPおよびTIHOTP のスピン動的特性 これらの材料の水素結合ネットワークは、構造的剛性の低下をもたらし、サブテラハツ語の光フォノンを引き起こし、デバイ温度の低下、状態の音響フォノン密度の増加、およびスピンラティス弛緩を促進することを発見しました。水素結合ネットワークの重水素置換により、光学フォノンの頻度がさらに低下し、スピン格子緩和時間が短縮されました。 図3:MGHOTPおよびTIHOTP の振動スペクトル これらの発見に基づいて、研究者は、フォノン分散を正確に制御し、スピンラティスの弛緩を抑制し、キュービットのパフォーマンスを改善するための分子キュービットフレームワーク設計を提案しました。この成果は、分子電子スピンキビットのソリッドステート統合と量子情報アプリケーションの新しい洞察と機会を提供します。 図4:MGHOTPとTIHOTP のスピン格子緩和メカニズム 図5:低周波光フォノンとMGOTPのスピンラティス緩和に対する水素結合ネットワークにおける重湿性置換の影響 要約すると、この研究では、分子キットフレームワーク材料の構造的剛性を使用して、フォノン分散を制御し、スピン格子弛緩を抑制し、量子コヒーレンスと該当する温度範囲を改善できることが明らかになりました。この調査結果は、分子電子スピンのキビットの固体統合と分子量子情報技術を潜在的に前進させる可能性があります。
再結晶研究における TEM と EBSD の応用
再結晶研究における TEM と EBSD の応用
R結晶化Pプロセスとは何ですか? 再結晶化は、塑性変形後の材料の微細構造の回復を伴う材料科学における重要な現象です。このプロセスは、材料特性を理解し、加工技術を最適化するために非常に重要です。[9] 15 R 16 結晶化のメカニズムと 13 C 14 分解 再結晶化プロセスは通常、熱処理または熱変形によって引き起こされ、変形中に欠陥が発生した後の材料の自然回復が含まれます。転位や粒界などの欠陥は、転位の再配列と消滅を通じて高温での系自由エネルギーの減少を促進し、新しい粒構造の形成につながります。 再結晶化は、静的再結晶化 (SRX) と動的再結晶化 (DRX) に分類できます。 SRX はアニーリング プロセス中に発生しますが、DRX は熱変形中に発生します。さらに、再結晶化は、連続動的再結晶化 (CDRX)、不連続動的再結晶化 (DDRX)、幾何学的動的再結晶化 (GDRX)、メタダイナミック再結晶化 (MDRX) などの特定のメカニズムに基づいてさらに細分化できます。これらの分類は厳密に定義されておらず、研究者によって異なる解釈がある可能性があります[23]。 再結晶に影響を与える要因 再結晶プロセスは、積層欠陥エネルギー (γSFE)、初期結晶粒径、熱処理条件、第 2 相粒子などのさまざまな要因の影響を受けます。積層欠陥エネルギーの大きさは転位破壊と移動度を決定し、それによって再結晶率に影響を与えます。初期結晶粒径が小さいことと、高温および低い歪み速度などの適切な熱処理条件により、再結晶化が促進されます。第二相粒子は粒界の動きを妨げることにより、再結晶化プロセスに大きな影響を与える可能性があります。[31] 画像技術の応用 EBSD および TEM は、再結晶研究で使用される 2 つの古典的なイメージング技術です。 EBSD は、DefRex マップを使用して再結晶粒の分布と割合を分析しますが、解像度の制限により精度の問題が生じる可能性があります。一方、TEM は転位などの材料の下部構造を直接観察し、再結晶の研究により直観的な視点を提供します [43]。 再結晶研究におけるEBSDの応用 EBSD は、粒界を観察することによって粒子が再結晶化を受けたかどうかを判断するために使用されます。たとえば、鍛造 TNM 合金の DefRex マップでは、高角度の境界に囲まれた粒子は通常、再結晶粒子と見なされます。この技術は、結晶粒の配向と粒界の種類に関する詳細な情報を提供し、再結晶中の微細構造の変化の理解を助けます [51]。 鍛造TiAl合金のBC+GB(粒界)マップ 再結晶研究における TEM の応用 TEM
どの顕微鏡があなたに適していますか? TEM または SEM
どの顕微鏡があなたに適していますか? TEM または SEM
透過型E電子顕微鏡 (TEM) および走査型電子顕微鏡 (SEM) は、現代の科学研究において不可欠なツールです。光学顕微鏡と比較して、電子顕微鏡は解像度が高いため、より小さなスケールで標本の微細構造を観察および研究することができます。 電子顕微鏡は、電子線と試料との相互作用を利用することで、高解像度・高倍率の画像を得ることができます。これにより、研究者は他の方法では入手が難しい重要な情報を入手できるようになります。[12] どの顕微鏡があなたに適していますか? ニーズに適した電子顕微鏡技術を選択する場合、最適なものを決定するにはさまざまな要素を考慮する必要があります。決定を下す際に役立ついくつかの考慮事項を以下に示します: 電界放出型TEM | TH-F120 分析目的: まず、分析の目的を決めることが重要です。さまざまな種類の分析には、さまざまな電子顕微鏡技術が適しています。 a. 粗さや汚染の検出など、ただし、試料の結晶構造を理解したい場合、構造欠陥や不純物を検出したい場合は、透過型電子顕微鏡 (TEM) の方が適切である可能性があります。 54 解像度要件: 分析要件によっては、特定の解像度が必要になる場合があります。この点に関して、TEM は一般に SEM と比較して高い解像度能力を備えています。高解像度のイメージングを実行する必要がある場合、特に微細構造を観察する場合は、TEM の方が適している可能性があります。[65] S標本準備: 重要な考慮事項は、標本の準備の複雑さです。 a. SEM 標本は通常、最小限の準備を必要とするか、まったく準備を必要としません。SEM では、対照的に、TEM の 試料準備プロセスははるかに複雑であり、操作には経験豊富なエンジニアが必要です。 TEM 試料 は非常に薄く、通常は 150 nm 未満、さらには 30 nm 未満で、できるだけ平らでなければなりません。これは、TEM試料の準備にはより多くの時間と専門知識が必要になる可能性があることを意味します。 画像の種類: SEM は 試料 表面の詳細な 3 次元画像を提供し、TEM は 試料 の内部構造の 2 次元投影画像を提供します。 a. スキャン Electron Microscope(SEM) により、試料の表面形態の 3 次元画像が得られます 。主に形態解析に使用されます。 材料の表面形態を調べる必要がある場合は、SEM を使用できますが、実験要件を満たしているかどうかを確認するために解像度を考慮する必要があります。 b. 内部の結晶または原子構造を理解する必要がある場合材料の場合、TEM が必要です。 透過型

伝言を残す

伝言を残す
詳細については、お気軽にお問い合わせください。見積もりを依頼したり、オンライン デモを予約したりしてください。できるだけ早くご返信させていただきます。
提出する

製品

チャット

接触