集束イオンビーム(FIB)技術は、特に半導体製造やナノファブリケーションにおいて、現代の技術革新に不可欠な要素となっています。FIB技術自体は広く知られていますが、その歴史や発展についてはあまり知られていません。集束イオンビーム(FIB) 電磁レンズを使用してイオンビームを非常に小さな領域に集中させるマイクロ切断装置です。FIB では、イオン源 (ほとんどの FIB は Ga を使用しますが、一部のデバイスには He および Ne イオン源があります) からのイオンを加速し、ビームをサンプルの表面に焦点を合わせます。CIQTEK DB550 集束イオンビーム走査電子顕微鏡(FIB-SEM) FIB技術の起源 20世紀以降、ナノテクノロジーは科学技術の新たな分野として急速に発展してきました。現在、ナノテクノロジーは科学技術の進歩における最前線の一つであり、国家戦略として経済社会の発展に重要な意味を持っています。ナノ構造は、その構造単位が電子のコヒーレンス長と光の波長に近づくことで、表面効果、界面効果、サイズ効果、量子サイズ効果といった特異な特性を有しています。電子工学、磁気学、光学、機械工学において多くの斬新な特性を示し、高性能デバイスへの応用において大きな可能性を秘めています。新たなナノスケール構造やデバイスの開発には、精密で多次元的かつ安定したマイクロナノファブリケーション技術の進歩が不可欠です。マイクロナノファブリケーションのプロセスは広範囲にわたり、イオン注入、フォトリソグラフィー、エッチング、薄膜堆積などの技術が一般的に用いられます。近年、現代の製造プロセスにおける小型化の傾向に伴い、集束イオンビーム(FIB)技術はさまざまな分野でマイクロナノ構造の製造にますます応用され、マイクロナノ加工において欠かせない重要な技術となっています。FIB技術は、従来のイオンビームシステムと集束電子ビームシステムをベースに開発されており、本質的には同じです。電子ビームと比較すると、FIBはイオン源で加速・集束させて生成したイオンビームを用いて試料表面を走査します。イオンは電子よりもはるかに質量が大きいため、H+イオンのような最も軽いイオンでさえ、電子の1800倍以上の質量があります。これにより、イオンビームは電子ビームと同様の画像化・露光能力を実現できるだけでなく、イオンの重い質量を利用して固体表面から原子をスパッタリングすることで、直接加工ツールとして使用することができます
もっと見る完璧な画像を作成するには、理論的な知識と実践的な経験、そして多くの要素のバランスを組み合わせる必要があります。このプロセスでは、画像の使用においていくつかの難しい問題に直面する可能性があります。 電子顕微鏡。 あスティグマ 乱視は画像補正の中でも最も難しいものの一つで、練習が必要です。下の図の中央の画像は、乱視補正後に正しく焦点が合った画像です。左と右の画像は乱視補正が不十分で、画像に伸びた縞模様が見られる例です。 正確な画像を得るために、電子ビーム(プローブ)は試料に到達した時点で円形であるべきです。プローブの断面が歪んで楕円形になる場合があります。これは、機械加工精度、磁極片の欠陥、強磁性コイルの鋳造における銅巻線の欠陥など、様々な要因によって引き起こされる可能性があります。この変形はケラレと呼ばれ、焦点合わせが困難になることがあります。 重度の非点収差は画像補正において最も難しいものの一つであり、練習が必要です。下図の中央の画像は、非点収差補正後に正しく焦点が合った画像です。左と右の画像は、非点収差補正が不十分な例で、画像に伸びた縞模様が現れています。非点収差は、画像においてX方向に「縞模様」として現れることがあります。画像がアンダーフォーカスからオーバーフォーカスに移行すると、縞模様はY方向に変化します。焦点が正確に合うと縞模様は消え、適切なスポットサイズであれば適切な焦点が合うようになります。 10,000倍程度に拡大した際に、対物レンズをアンダーフォーカスまたはオーバーフォーカスに調整した際に、どちらの方向にも縞模様が見られない場合は、通常、 1つのスティグマ画像ではスティグマ 通常、1000 倍未満の倍率の画像では無視できます。 周辺減光を修正する最良の方法は、XとYの周辺減光オフセットをゼロ(つまり、 1つのスティグマ (補正)し、標本にできるだけ細かく焦点を合わせます。次に、X軸またはY軸を調整します。 1つのスティグマ コントロール(同時に調整することはできません)を使用して、最適な画像を取得し、再度フォーカスします。 エッジ効果 エッジ効果は強化されたEl電子放出試料のエッジ部で発生します。エッジ効果は、二次電子生成における形状の影響によって引き起こされ、二次電子検出器によって生成される像の輪郭の原因でもあります。電子はエッジやピークに向かって優先的に流れ、そこから放出されるため、凹部など検
もっと見るに基づいて d ual-beam e レクトロン m icroscope DB550 独立して制御されています Ciqtek 、 t ransmission e レクトロン m icroscope(TEM) 28nmプロセスノードチップのナノスケールサンプル準備が正常に達成されました。 TEM検証は、各構造の重要な次元を明確に分析し、半導体プロセスの欠陥分析と収量の改善のための国内の精密検出ソリューションを提供します。
もっと見る金属材料は、現代の産業で不可欠な役割を果たしており、そのパフォーマンスは製品の品質とサービス生活に直接影響します。 材料科学の継続的な開発により、金属材料の顕微鏡構造と組成分析には、より高い要件が提案されています。 高度な特性化ツールとして、走査型電子顕微鏡(SEM) 高解像度の表面形態情報を提供し、元素組成決定のための分光分析技術と組み合わせることができ、金属材料研究の重要なツールになります。 この記事は、金属材料の特性評価におけるSEMテクノロジーの適用について議論し、関連する研究の参照とガイダンスを提供することを目的としています。 電子顕微鏡の基本原理(SEM)走査型電子顕微鏡の動作原理は、電子ビームとサンプル表面との間の相互作用に基づいています。 高エネルギー電子ビームがサンプル表面をスキャンすると、二次電子、後方散乱電子、特性X線などを含むさまざまな信号が生成されます。これらの信号は、対応する検出器によって収集され、サンプルの表面形態画像または元素分布マップを形成するために処理されます。 金属材料のSEMサンプル調製微細構造分析: Ciqtek EMは、研究者が観察するのに役立つ高解像度の画像を提供します 金属の微細構造と、穀物のサイズ、形状、位相などの複合材料の微細構造を分析する 分布、および欠陥(たとえば、亀裂、および包含)。 これは、関係を理解するために重要です 材料特性と処理技術の間。 αβチタン合金熱の影響を受けたゾーンは、溶接接合部で最も脆弱な領域です。 微細構造の変化を研究します 溶接領域の特性は、溶接の問題を解決し、溶接品質を改善するために非常に重要です。 構成分析:EDSまたはWDSシステムが装備されている、 ciqtek sem 定性的と 定量的元素組成分析。 これは、分布を研究するために非常に重要です 合金要素のパターンと材料特性への影響。 edsによるエレメンタルライン分析SEMとEDS分析を組み合わせることにより、 組成の変化と 不純物の要素分布溶接領域を観察できます。 障害分析: 骨折、腐食、その他の形態の損傷などの故障後、金属で発生します 複合材料Ciqtek SEMは、メカニズム障害を分析するための重要なツールです。 調べることによって 骨折表面、腐食生成物など、故障の根本原因を識別し、提供することができます 材料の信頼性と寿命を改善するための洞察。 2A12アルミニウム合金成分の故障2A12アルミニウム合金はさまざまな降水段階を示します。 形態学
もっと見る結晶の定義と特性: 結晶は、3次元空間における粒子(分子、原子、イオン)の通常および周期的な配置によって形成される材料です。結晶は、単結晶と多結晶に分類できます。結晶の形成には、粒子が通常のパターンで自分自身を配置するプロセスが含まれます。粒子の定期的な配置により、結晶内の構造化されたフレームワークが生じ、特定の格子構造を持つ結晶を固体にします。結晶は、定期的な幾何学的形状を示し、固定融点を持ち、機械的強度、熱伝導率、熱膨張などの異方性特性を示します。結晶は自然界に豊富であり、自然に見られるほとんどの固体材料は結晶です。ガス、液体、およびアモルファス材料は、適切な条件下で結晶に変換することもできます。 X線回折は、材料が結晶であるかどうかを識別するために一般的に使用されます。 結晶の融点と分布: 結晶中の原子の定期的な配置は、固定融点と固化点に寄与します。これは、アモルファス材料と比較した結晶の際立った特徴です。結晶は、塩や砂糖などの一般的な物質、地球の地殻を構成するミネラル、金属、半導体材料まで、自然界の形態が多様です。 電子M icroscopes およびEBSD 技術は、異なる条件下で結晶の安定性を理解し、材料の選択と用途の科学的洞察を提供するのに役立ちます。 単結晶と多結晶: 単結晶は、結晶全体で原子配置が一貫している連続結晶格子で構成され、結晶の異方性特性をもたらします。単結晶は、半導体業界の統合回路の基礎材料として使用されるシリコン単結晶など、特定の用途に最適です。 一方、多結晶は、方向が異なる複数の穀物で構成されています。個々の穀物は同じ結晶格子を持っていますが、その向きはランダムであり、巨視的な異方性のない多結晶をもたらします。ただし、特定の処理条件下では、多結晶の粒子は特定の方向に沿って優先的に整列し、結晶学的なテクスチャとして知られている優先方向を形成できます。結晶学的なテクスチャは、特定の方向に材料の特性を強化することができます。たとえば、金属処理におけるテクスチャの制御は、材料の延性または強度を改善することができます。 GoldTest Labなどの分析研究所は、単結晶と多結晶の正確な分析とテストを提供し、材料用途向けの信頼できる洞察を提供します。 クリスタル向けの重要性: 結晶の向きの分析は、材料特性を理解するために重要です。結晶の向きは、サンプル座標系とサンプルの肉眼的座標系との関係の決定を含
もっと見る最近、ウェストレイク大学のSun Leiが率いる研究チームによる「スピン格子緩和のフォノニック変調」というタイトルの研究論文が、Nature Communicationsで発行されました。 図1:MQFSのスピン格子緩和の水素結合ネットワークとフォノン変調 チームは ciqtek パルス e lectron p aramaggenety r esonance(epr) s を使用しました pectroscopy X-Band EPR100 および W-Band EPR-W900 は、セミキノンラジカルを含む2つの分子キットフレームワーク材料を特徴付けます。 図2:MGHOTPおよびTIHOTP のスピン動的特性 これらの材料の水素結合ネットワークは、構造的剛性の低下をもたらし、サブテラハツ語の光フォノンを引き起こし、デバイ温度の低下、状態の音響フォノン密度の増加、およびスピンラティス弛緩を促進することを発見しました。水素結合ネットワークの重水素置換により、光学フォノンの頻度がさらに低下し、スピン格子緩和時間が短縮されました。 図3:MGHOTPおよびTIHOTP の振動スペクトル これらの発見に基づいて、研究者は、フォノン分散を正確に制御し、スピンラティスの弛緩を抑制し、キュービットのパフォーマンスを改善するための分子キュービットフレームワーク設計を提案しました。この成果は、分子電子スピンキビットのソリッドステート統合と量子情報アプリケーションの新しい洞察と機会を提供します。 図4:MGHOTPとTIHOTP のスピン格子緩和メカニズム 図5:低周波光フォノンとMGOTPのスピンラティス緩和に対する水素結合ネットワークにおける重湿性置換の影響 要約すると、この研究では、分子キットフレームワーク材料の構造的剛性を使用して、フォノン分散を制御し、スピン格子弛緩を抑制し、量子コヒーレンスと該当する温度範囲を改善できることが明らかになりました。この調査結果は、分子電子スピンのキビットの固体統合と分子量子情報技術を潜在的に前進させる可能性があります。
もっと見るR結晶化Pプロセスとは何ですか? 再結晶化は、塑性変形後の材料の微細構造の回復を伴う材料科学における重要な現象です。このプロセスは、材料特性を理解し、加工技術を最適化するために非常に重要です。[9] 15 R 16 結晶化のメカニズムと 13 C 14 分解 再結晶化プロセスは通常、熱処理または熱変形によって引き起こされ、変形中に欠陥が発生した後の材料の自然回復が含まれます。転位や粒界などの欠陥は、転位の再配列と消滅を通じて高温での系自由エネルギーの減少を促進し、新しい粒構造の形成につながります。 再結晶化は、静的再結晶化 (SRX) と動的再結晶化 (DRX) に分類できます。 SRX はアニーリング プロセス中に発生しますが、DRX は熱変形中に発生します。さらに、再結晶化は、連続動的再結晶化 (CDRX)、不連続動的再結晶化 (DDRX)、幾何学的動的再結晶化 (GDRX)、メタダイナミック再結晶化 (MDRX) などの特定のメカニズムに基づいてさらに細分化できます。これらの分類は厳密に定義されておらず、研究者によって異なる解釈がある可能性があります[23]。 再結晶に影響を与える要因 再結晶プロセスは、積層欠陥エネルギー (γSFE)、初期結晶粒径、熱処理条件、第 2 相粒子などのさまざまな要因の影響を受けます。積層欠陥エネルギーの大きさは転位破壊と移動度を決定し、それによって再結晶率に影響を与えます。初期結晶粒径が小さいことと、高温および低い歪み速度などの適切な熱処理条件により、再結晶化が促進されます。第二相粒子は粒界の動きを妨げることにより、再結晶化プロセスに大きな影響を与える可能性があります。[31] 画像技術の応用 EBSD および TEM は、再結晶研究で使用される 2 つの古典的なイメージング技術です。 EBSD は、DefRex マップを使用して再結晶粒の分布と割合を分析しますが、解像度の制限により精度の問題が生じる可能性があります。一方、TEM は転位などの材料の下部構造を直接観察し、再結晶の研究により直観的な視点を提供します [43]。 再結晶研究におけるEBSDの応用 EBSD は、粒界を観察することによって粒子が再結晶化を受けたかどうかを判断するために使用されます。たとえば、鍛造 TNM 合金の DefRex マップでは、高角度の境界に囲まれた粒子は通常、再結晶粒子と見なされます。この技術は、結晶粒の配向と粒界の種類に関する詳細な情報を提供し、再結晶中の微細構造の変化の理解を助けます [51]。 鍛造TiAl合金のBC+GB(粒界)マップ 再結晶研究における TEM の応用 TEM
もっと見る
No. 1969, Kongquetai Road, High-tech Zone, Hefei, Anhui, China
+8615156059133
+8613083191369
info@ciqtek.com

