日本語
English
français
Deutsch
русский
italiano
español
português
العربية
한국의
简体中文
エネルギーと電力
地殻中のナトリウム含有量が豊富(リチウムは0.0065%に対し、ナトリウムイオン電池は2.6%)であることから、ナトリウムイオン電池(SIB)はリチウムイオン電池のコスト効率の高い代替品として注目を集めています。しかしながら、SIBはエネルギー密度において依然として劣っており、高容量電極材料の必要性が浮き彫りになっています。ハードカーボンは、ナトリウム吸蔵ポテンシャルが低く容量が高いことから、SIBアノードの有力な候補です。しかし、グラファイトのミクロドメイン分布、閉気孔、欠陥濃度といった要因が、初期クーロン効率(ICE)と安定性に大きく影響します。改質戦略には限界があります。ヘテロ原子ドーピングは容量を向上させることができますが、ICEは低下します。従来のCVDは閉気孔の形成に役立ちますが、メタン分解速度が遅い、サイクルが長い、欠陥が蓄積されるなどの問題があります。 中国科学技術大学(USTC)のヤン・ユー教授のチーム を活用した CIQTEK 走査型電子顕微鏡(SEM) 様々なハードカーボン材料の形態を調査するため、研究チームは触媒支援化学気相堆積(CVD)法を開発し、CH₄分解を促進し、ハードカーボンの微細構造を制御しました。Fe、Co、Niなどの遷移金属触媒は、CH₄分解のエネルギー障壁を効果的に低下させ、効率を向上させ、堆積時間を短縮しました。 しかし、CoとNiは析出した炭素の過度の黒鉛化を引き起こし、横方向と厚さ方向の両方に細長い黒鉛状構造を形成する傾向があり、ナトリウムイオンの吸蔵と輸送を阻害しました。一方、Feは適切な炭素の再配列を促進し、欠陥が少なく、黒鉛ドメインが発達した最適化された微細構造をもたらしました。この最適化により、不可逆的なナトリウム吸蔵が低減し、初期クーロン効率(ICE)が向上し、可逆的なNa⁺吸蔵サイトの利用可能性が高まりました。 その結果、最適化されたハードカーボンサンプル(HC-2)は、457mAh g⁻¹という優れた可逆容量と90.6%という高いICE(自己充足率)を達成しました。さらに、その場X線回折(XRD)とその場ラマン分光法によって、吸着、インターカレーション、そして細孔充填に基づくナトリウム貯蔵機構が確認されました。この研究は、 先端機能性材料 タイトル: 高性能ナトリウムイオン電池のための豊富な閉孔を備えた硬質炭素の触媒支援化学蒸着エンジニアリング。 図1aに示すように、このハードカーボンは、市販の多孔質炭素を前駆体とし、メタン(CH₄)を供給ガスとして用いた触媒支援化学気相成長(CVD)法によって合成されました。図1dは、金属触媒(Fe、Co、Ni)および多孔質炭素表面におけるCH₄およびその脱水素中間体の吸着エネルギーを示しています。金属触媒の導入によりCH₄分解のエネルギー障壁が低下し、FeがCH₄およびその中間体の分解を促進するのに最も効果的であることを示しています。 異なる触媒条件下での高解像度TEM(HRTEM)画像(図1e~h)から、次のことがわかります。 触媒がなければ、硬質炭素は欠陥の多い非常に無秩序な構造を示します。 Fe を触媒として使用することで得られる硬質炭素は、短距離で秩序化されたグラファイトのような微結晶と、グラファイト領域の間に埋め込まれた閉じた細孔を特徴とします。 Co はグラファイト領域の拡大を促進し、グラファイト層の数を増加させます。 Ni はグラファイト構造を生じさせ、さらにはカーボンナノチューブの形成さえも引き起こしますが、これは高秩序であるにもかかわらず、ナトリウムイオンの貯蔵と輸送には不利です。 図2は、FeCl₃濃度を変化させて作製したハードカーボン材料の構造特性評価結果を示しています。XRDパターン(図2a)とラマンスペクトル(図2b)は、含浸溶液中のFeCl₃濃度が増加するにつれて、グラファイトの層間間隔が徐々に減少し(0.386 nmから0.370 nmへ)、欠陥率(ID/IG)が低下し、横方向の結晶子サイズ(La)が増加することを示しています。これらの変化は、Feが炭素原子の再配列を触媒し、グラファイト化度を高めることを裏付けています。 X線光電子分光法(XPS)の結果(図2cおよび2e)は、Fe触媒濃度の増加に伴い、ハードカーボン中のsp²混成炭素の割合が増加し、黒鉛化がさらに促進されることを示している。同時に、ハードカーボン中の酸素含有量は減少している。これは、炭化中にCH₄分解によって生成された水素(H₂)が酸素を消費し、表面の酸素関連欠陥が減少するためと考えられる。 小角X線散乱(SAXS)分析(図2f)により、平均閉孔径はそれぞれ0.76、0.83、0.90、0.79、0.78 nmであることが明らかになりました。より大きな閉孔は、ナトリウムクラスターの安定化とNa⁺輸送速度の改善に有益です。 HRTEM 画像 (図 2g ~ i) は、Fe 負荷量が低い場合のグラファイトドメインが小さいことを示していますが、触媒負荷量が多すぎると、層間間隔が狭い長距離秩序構造が形成され、Na⁺ の輸送が妨げられる可能性があります。 図3は、異なるFe触媒担持量がハードカーボン材料の電気化学特性に与える影響を示しています。定電流充放電試験(図3a)では、含浸溶液中のFeCl₃濃度が増加するにつれて、HC-2(0.02 M FeCl₃)が最高の性能を示し、可逆容量は457 mAh g⁻¹、初期クーロン効率(ICE)は90.6%と高い値を示しました。低電圧プラトー領域は容量の大部分(約350 mAh g⁻¹)を占めており、ナトリウム貯蔵における閉孔の利点を示しています。 過剰な触媒負荷(例:HC-4)は、炭素層の過剰秩序化により容量(377 mAh g⁻¹)の減少につながるため、グラファイトドメインの成長とナトリウムイオン輸送経路のバランスをとる必要性が浮き彫りになります。0.5 A g⁻¹の電流密度で100サイクル後も容量は388 mAh g⁻¹を維持しており、より大きな閉孔がNaクラスターの安定性を高め、Na⁺輸送速度を改善することを示しています。 図 4 は、さまざまなハードカーボン表面の SEI 構造を示しています。(a) と (b) は、それぞれ opt-HC と HC-2 における NaF⁻、P、および CH₂ 種の深さプロファイルと分布を示しています。(c) と (d) は、30 mA g⁻¹ で 10 サイクル後の opt-HC と HC-2 の TEM 像を示しています。(e) と (f) は、30 mA g⁻¹ で 10 サイクル後の opt-HC と HC-2 の XPS スペクトルを示しています。(g) は、30 mA g⁻¹ で 10 サイクル後の HC-2 の HRTEM 像を示しています。1 サイクル後の (h) opt-HC と (i) HC-2 の電極断面の EPMA マッピング像を示しています。 図 5 に示すように、GITT 曲線 (図 5a) は、HC-2 の Na⁺ 拡散係数 (DNa⁺) が opt-HC よりも高いことを示し、HC-2 がより...
USTCのYan Yu教授のチームが活用 その CIQTEK S缶詰EレクトロンM顕微鏡 SEM3200 サイクリング後の形態を研究するため、親カリウム性と触媒活性を両立させる人工界面層の候補材料として、制御可能な欠陥を有するアモルファスカーボンを開発しました。 研究チームは、炭化温度を制御することで、欠陥量の異なる一連の炭素材料(SC-Xと呼称、Xは炭化温度)を作製しました。その結果、欠陥が過剰なSC-800は電解液の分解が著しく、SEI膜が不均一になり、サイクル寿命が短くなることが分かりました。欠陥が最も少ないSC-2300はカリウムとの親和性が不十分で、カリウムの樹枝状成長を誘導しやすいことがわかりました。局所的に秩序化された炭素層を有するSC-1600は、最適化された欠陥構造を示し、親カリウム性と触媒活性の最適なバランスを実現しました。SC-1600は電解液の分解を制御し、緻密で均一なSEI膜を形成できました。 実験結果では、SC-1600@Kは0.5mA cmの電流密度で最大2000時間の長期サイクル安定性を示したことが実証された。-2 容量は0.5mAh cm-2より高い電流密度(1 mA cm-2)および容量(1 mAh cm-2)は、1300時間を超える安定したサイクル寿命を維持し、優れた電気化学特性を維持しました。PTCDA正極と組み合わせたフルセル試験では、電流密度1A/gで1500サイクル後も78%の容量維持率を維持し、卓越したサイクル安定性を示しました。 この研究は、「デンドライトフリーナトリウム/カリウム金属電池における人工界面層の親カリウム性と触媒活性のバランス」に掲載されました先端材料。図1:異なる炭化温度で作製した炭素試料(SC-800、SC-1600、SC-2300)の微細構造分析結果を示す。X線回折(XRD)、ラマン分光法、X線光電子分光法(XPS)、広角X線散乱(WAXS)などの手法を用いて、これらの試料の結晶構造、欠陥レベル、酸素および窒素ドーピングを分析した。その結果、炭化温度の上昇に伴い、炭素材料中の欠陥が徐々に減少し、結晶構造がより整然としていることが示された。 図2:有限要素シミュレーションを用いて、様々な複合負極におけるカリウム金属成長時の電流密度分布を解析しました。シミュレーション結果から、SC-1600@K複合電極はカリウム析出時に均一な電流分布を示し、デンドライト成長を効果的に抑制することが示されました。さらに、原子間力顕微鏡(AFM)を用いてSEI層のヤング率を測定したところ、SC-1600@K電極上のSEI層はより高いヤング率を示し、より強固な硬度とデンドライト形成抑制効果を示しまし
高性能リチウム銅箔はリチウムイオン電池の主要材料の一つであり、電池の性能に大きく関係します。電子機器や新エネルギー自動車における大容量、高密度、高速充電への需要の高まりに伴い、電池材料に対する要求も高まっています。より優れた電池性能を達成するには、表面品質、物性、安定性、均一性など、リチウム銅箔の全体的な技術指標を向上させる必要があります。 走査型電子顕微鏡-EBSD法による微細構造解析 材料科学では、組成と微細構造が機械的特性を決定します。 走査型電子顕微鏡(SEM) は、材料の表面特性評価に一般的に使用される科学機器であり、銅箔の表面形態や粒子の分布を観察できます。さらに、後方散乱電子回折 (EBSD) は、金属材料の微細構造を分析するために広く使用されている特性評価手法です。電界放射型走査電子顕微鏡上にEBSD検出器を構成することにより、研究者は、加工、微細構造、および機械的特性の間の関係を確立できます。 下図はCIQTEK電界放出型SEM5000で撮影した電解銅箔の表面形態を示しています。 銅箔平滑面/2kV/ETD 銅箔マット表面e/2kV/ETD サンプル表面が十分に平坦であれば、SEM 後方散乱検出器を使用して電子チャネル コントラスト イメージング (ECCI) を取得できます。電子チャネリング効果とは、入射電子ビームがブラッグ回折条件を満たす場合に結晶格子点からの電子の反射が大幅に減少し、多くの電子が格子を通過して「チャネリング」効果を示すことを指します。したがって、研磨された平らな多結晶材料の場合、後方散乱電子の強度は、入射電子ビームと結晶面の間の相対的な向きに依存します。方位のずれが大きい粒子は、より強い後方散乱電子信号とより高いコントラストを生成し、ECCI による粒子方位分布の定性的決定を可能にします。 ECCI の利点は、サンプル表面のより広い領域を観察できることです。したがって、EBSD取得前に、ECCIイメージングを使用して、粒子サイズ、結晶方位、変形ゾーンなどの観察を含む、サンプル表面の微細構造の巨視的特性評価を迅速に行うことができます。その後、EBSDテクノロジーを使用して、適切なスキャン領域を設定できます。関心領域における結晶方位のキャリブレーションのためのステップ サイズ。 EBSD と ECCI を組み合わせると、材料研究における結晶方位イメージング技術の利点が最大限に活用されます。[32] イオンビーム断面研磨技術を使用することにより、CIQTEKは、走査型電子顕微鏡での ECCI イメ
I. リチウムイオン電池 リチウムイオン電池は二次電池であり、主に正極と負極の間を移動するリチウムイオンに依存して機能します。充電および放電プロセス中、リチウムイオンはダイヤフラムを介して 2 つの電極間を行き来し、電極材料の酸化還元反応によってリチウムイオンエネルギーの貯蔵と放出が行われます。 リチウムイオン電池は主に正極材、隔膜、負極材、電解液などで構成されています。中でも、リチウムイオン電池の隔膜は、正極と負極の直接接触を防ぐ役割を果たし、電解質中でのリチウムイオンの自由な通過を可能にし、リチウムイオン輸送のための微多孔性チャネルを提供します。 リチウムイオン電池の隔膜の細孔径、多孔度、分布の均一性、厚さは電解液の拡散速度と安全性に直接影響し、電池の性能に大きな影響を与えます。隔膜の細孔径が小さすぎると、リチウムイオンの透過性が制限され、電池内のリチウムイオンの移動性能に影響を及ぼし、電池抵抗が増加します。口径が大きすぎると、リチウム樹枝状結晶の成長によりダイヤフラムを突き破り、ショートや爆発などの事故を引き起こす可能性があります。 Ⅱ.リチウム隔膜の検出における電界放射型走査型電子顕微鏡の応用 走査型電子顕微鏡を使用すると、隔膜の孔径と分布の均一性を観察できるだけでなく、多層およびコーティングされた隔膜の断面を観察して隔膜の厚さを測定することもできます。従来市販されている隔膜材料は、ポリエチレン(PE)、ポリプロピレン(PP)の単層フィルムやPP/PE/PPの3層複合フィルムなどのポリオレフィン系材料から製造された微多孔膜がほとんどです。ポリオレフィンポリマー材料は絶縁性かつ非導電性であり、電子ビームに対して非常に敏感であり、高電圧下で観察すると帯電効果を引き起こす可能性があり、ポリマーダイヤフラムの微細構造は電子ビームによって損傷を受ける可能性があります。GSIが独自に開発した電界放射型走査電子顕微鏡SEM5000は、低電圧・高分解能を備え、低電圧でダイヤフラムを損傷することなくダイヤフラム表面の微細構造を直接観察することができます。 振動板の作製工程は大きく乾式法と湿式法の2種類に分けられます。乾式法は、一方向延伸法と二方向延伸法を含む溶融延伸法であり、工程が簡単で製造コストが低く、リチウムイオン電池隔膜の製造方法として一般的である。乾式法で作製した隔膜は平坦で長い微多孔質
2022年1月、CIQTEK-QOILTECHが提供するCatLiD-I 675ニアビットフォローオン測定システムは、オルドス山脈の宜山斜面と金西屈曲褶曲帯の間の移行地点に位置する臨興中ガス田で坑井の稼働に成功した。関係者がよく認識している盆地。 この坑井の対象層の継ぎ目上下の岩質は主に泥岩と炭素質泥岩である。炭層は深いところに埋まっており、周囲の井戸では入手可能な参考データが少ない。炭層セクションは、壁の崩壊や坑井の漏洩、ダウンホールのスタック掘削、埋設掘削、その他の複雑な事故が発生しやすいです。また、着陸前進による井戸の傾き調整が大きい。 CIQTEK-QOILTECH CatLiD-I 675 ニアビットは 2208 m から拾われ、再テスト曲線は上部計器と一致し、正確な着地点を与えるための指針となるデータを提供しました。 着陸時、炭層の前進により軌道は炭層の底部まで下がり、ニアビットのガンマ曲線は炭層の上部から底部までの完全な曲線パターンを測定します。後で炭層内のボーリング孔の軌跡の位置を判断するための基礎となります。 掘削時のニアビットのガンマカーブ変化が高分解能で一目瞭然で、炭層内外および炭層内の位置を正確に判断します。炭層内の脈石の値を正確に変化させることで、軌道の位置を効果的に決定でき、掘削遭遇率とボーリング孔軌道の滑らかさが向上します。 この井戸のサービスセクションは 2,208 ~ 3,208 メートルで、累積映像は 1,000 メートル、掘削遭遇率は 91.7% です。累積ダウンホール時間は 168 時間、純粋な掘削時間は 53.5 時間、平均機械掘削速度は 18.69m/h で、掘削サイクルを大幅に短縮して、完了深度まで掘削する旅です。 CIQTEK-QOILTECH の現場作業員と関連チームが協力して掘削サイクルを短縮し、掘削遭遇率を高め、リスクを軽減し、最終的に全員から高い評価を得ることができました。CIQTEK-QOILTECH CatLiD-I 675 ニアビット測定システムは完璧な完成品です。
伝言を残す
家
製品
チャット
接触