コリアラボ 2024 KOREA LABは、分析、実験機器、バイオテクノロジーに関する韓国最大の展示会です。アジア太平洋地域での市場シェアを拡大するための効果的なマーケティング ツールを提供します。このイベントには業界のメーカー、サプライヤー、専門家が集まり、ブランドのポジショニング、製品のプロモーション、パートナーシップ構築の機会を提供します。 · ブース #8I306 でお会いしましょう: 電子常磁性共鳴 (EPR) と走査型電子顕微鏡 (SEM) に基づくソリューションを紹介する当社のブースでお会いできることを楽しみにしています。実際に動作する電子顕微鏡を展示し、ご質問にお答えし、最新のハードウェアとソフトウェアを実演いたします。この機会に当社の専門家にご相談いただき、お試しください。 日程: 2024年4月23日~26日 場所: KINTEX 2(韓国国際展示場2)、韓国
もっと見る当社は、量子ダイヤモンド顕微鏡および教育用量子ダイヤモンドコンピュータを販売するAXTと新しい販売契約を締結したことを発表できることを嬉しく思います。 以下は AXTからの転載です。 CIQTEK は、世界をリードする量子精密測定技術の開発者および製造者です。2016 年に設立された同社は急速に成長し、現在 700 名を超える従業員を擁し、そのうち 70% が研究開発チームに属し、世界中に 800 を超える顧客を抱えています。彼らは、中国科学院、中国科学技術大学のマイクロスケール磁気共鳴主要研究室から生まれ、200 件を超える特許、ソフトウェア著作権、知的財産資産 (申請中および付与済み) を担当しています。 CIQTEK の 量子ダイヤモンド顕微鏡 (QDM) は、 ダイヤモンド窒素空孔中心 (NV 中心) におけるスピン磁気共鳴の原理に基づいた広磁場磁気共鳴装置です。超高空間解像度 (最大 400nm)、高感度 (ピクセルあたり 5μT√HZ) の高速イメージング、および広い視野 (1mm x 1mm) を提供します。半導体の特性評価に理想的に適しており、地質学や細胞生物学にも応用できます。 同社の 教育用量子ダイヤモンド コンピューターは、 ダイヤモンドの窒素空孔中心のスピン磁気共鳴に基づいた教育機器です。デスクトップのデザインにより、量子力学や量子コンピューティングの実験コースを実施するための教室、研究室、その他の環境に簡単に適応できます。また、室温で動作できる (つまり、極低温冷却が必要ない) ため、運用コストがほぼゼロになります。 AXTのマネージング・ディレクター、リチャード・トレット氏は次のように述べています。CIQTEK の製品はこれらの研究分野に不可欠であり、私たちはコミュニティの需要を先取りし、コミュニティが科学の限界を押し広げ続けることができる最先端のツールを提供していきたいと考えています。」 CIQTEK の上級量子エンジニアであるエリック・シュー博士は、「私たちはオーストラリアの成長の可能性を認識しており、AXT のビジョンを共有しており、オーストラリアの研究者のニーズを満たすために彼らと協力することを楽しみにしています。」と答えました。 AXT は現在、世界中の 50 社以上のサプライヤーを代表しています。そのポートフォリオは、材料科学、生命科学、鉱業、鉱物および非破壊検査に対応しています。
もっと見る結果の概要 応用 カタル。B:塩素化揮発性有機化合物の湿式過酸化物酸化のための二官能性吸着触媒としての多孔質黒鉛化炭素担持FeOCl: メソ細孔の効果と機構研究 湿式スクラビングと吸着強化不均一高度酸化プロセス (AOP) を組み合わせた方法は、塩素化揮発性有機化合物 (CVOC) を処理する効果的な方法です。多孔質黒鉛化炭素 (PGC) を担持した FeOCl 触媒は、ガス状のジクロロエタン、トリクロロエチレン、ジクロロメタン、クロロベンゼンを効果的に除去するために、武漢大学の Jinjun Li 氏のグループによって開発されました。PGC 担持 FeOCl 触媒は BET によって特性評価され、吸着性能が分析されました。その結果、PGC 担持 FeOCl 触媒はよく発達したメソ多孔質構造を持っており、粒子内の有機分子の拡散を促進することができ、より優れた吸着性能を示すことがわかりました。 CVOCの除去性能。 研究で使用されたCIQTEK EASY-Vシリーズ製品 化学。工学 J:空気中の揮発性有機化合物を除去する疎水性吸着剤としてのマイクロメソポーラス黒鉛化炭素繊維 活性炭繊維 (ACF) は、揮発性有機化合物 (VOC) の一般的な吸着剤です。武漢大学のJinjun Li氏のグループは、KOH触媒黒鉛化によって疎水性強化多孔質黒鉛化炭素繊維(PGCF)を調製し、代表的なVOCの吸着能力を研究した。その特徴は、PGCFが2,200を超える高い比表面積を有することを示した。 m 2 /g と微小媒体化された細孔構造により、有機物の選択的吸着能力が湿潤条件下で向上しました。 研究で使用されたCIQTEK EASY-Vシリーズ製品 化学。工学 J:揮発性有機化合物吸着用竹由来疎水性多孔質黒鉛化炭素 疎水性竹系多孔質黒鉛化炭素(BPGC)を複合触媒黒鉛化法により調製し、トルエン、シクロヘキサン、エタノールに対する吸着性能を研究し、異なる合成温度で調製した炭素材料の比表面積サイズとマイクロメソ細孔率を試験した。これは、炭素材料の吸着性能を評価するための理論的裏付けを提供します。 研究で使用されたCIQTEK EASY-Vシリーズ製品 物質吸着特性試験技術 光触媒による CO 2削減とプラスチック廃棄物の付加価値のある化学物質への光酸化変換は、温室効果と環境危機に対処する効果的な戦略です。さまざまな比率で合成された多孔質黒鉛化炭素(PGC)およびPGC担持FeOCl触媒(FeOCl/PGC)は、比表面積および細孔径分析装置によって特性評価され、N 2 の吸着および脱着等温線が以下の図1dに示されています。PGCOおよびFeOCl/PGCOによるN 2の吸着は、主に、典型的な微多孔性材料の特性であるP/P 0 <0.1の低相対圧帯域にあった。 対照的に、他の PGC および FeOCl/PGC の N 2吸着は相対圧力とともに一貫して増加し、すべての等温線にヒステリシス ループが存在し、材料中にメソ多孔質構造が存在することが示唆されました。FeOCl/PGC 触媒の等温特性は、対応する PGC 担体の等温特性と非常に似ていましたが、吸着された窒素量がわずかに減少しただけであり、触媒の添加によって炭素材料の気孔率が大きく変化しなかったことを示唆しています。カーボン素材。以下の図1eのNLDFT細孔径分布と表1の詳細データから、黒鉛化後に材料のメソ細孔の割合が増加し、炭素材料の比表面積が黒鉛化の増加とともに徐々に減少したことがわかります。黒鉛化。PGC0、PGC1、PGC3、PGC4、および PGC8 の DCE 除去効率は、それぞれ 26.5%、25.0%、22.2%、19.7%、および 16.5% でした。DCE 除去効率の順序は、PGC の比表面積の順序と一致しました。これは、吸着法による DCE の湿式洗浄中に吸着サイトが徐々に占有されるため、より多くの吸着サイトが、比表面積が大きいほど除去効果が高くなります。 図 1. (d) 窒素吸脱着等温線と (e) 異なる材料の細孔径分布曲線 次の図は、さまざまな炭素材料の特性評価から得られたN 2 の吸脱着等温線と NLDFT 細孔径分布データを示しています。ビスコースベースの活性炭繊維 (VACF) は I タイプの等温線を示し、その窒素吸着は P/P 0 < 0.05の低相対圧セクションで劇的に増加し、等温線はより高い P/P 0で平坦になる傾向がありました。材料が微細孔によって占められていることが示されました。対照的に、多孔質黒鉛化炭素繊維 (PGCF) の等温線は、低 P/P 0セクションでの顕著な窒素吸着に加えて、P/P 0の増加に伴って吸着が徐々に増加することを示し、このことは、マイクロポアとメソポアの両方が存在することを示しています。 PGCF。NLDFT データから、VACF の細孔幅のほとんどは 2 nm 未満であるのに対し、PGCF はミクロポーラス範囲に分布し、2 nm を超えるメソポーラス範囲に集中的に分布していることがわかります。さらに、材料の比表面積と細孔容積の詳細データを比較すると、VACF を PGCF に変換した後、比表面積が 1304 m2/g から 2200 m2/g 以上に増加し、細孔 容積が増加することがわかります。体積、特にメソ細孔体積は劇的に増加し、メソ細孔体積は全細孔体積の半分以上を占めます。PGCFの比表面積がVACFの比表面積よりも高いことは、PGCFがトルエンおよびシクロヘキサンに対してより敏感であることをさらに説明する。PGCF の比表面積が VACF よりも高いことは、PGCF によるトルエンとシクロヘキサンの吸着力の強化をさらに説明します。 さまざまな方法で調製されたバイオマスベースの活性炭 (BAC) および竹ベースの多孔質黒鉛化炭素 (BPGC) の比表面積と細孔サイズの特性評価により、 BAC による N 2の吸着は主に低い相対圧力 (P/P 0 < 0.05)、典型的な I 型等温線を示し、BAC が主に微孔性であることを示しました。対照的に、P/P 0 <0.05での吸着に加えて、BPGCによる窒素吸着はP/P 0の増加とともに依然として増加し、ヒステリシスループがあり、BPGCにミクロ細孔とメソ細孔の両方が存在することを示しています。以下の表 1 に示すように、さまざまな炭素材料の比表面積と細孔サイズ分布の詳細データを比較すると、BAC のメソ細孔容積は全細孔容積の 20% しか占めていないのに対し、メソ細孔容積はBPGC は一般に 44% 以上を占めますが、その中で BPGC-500 は最大の表面積 (2181 m2/g) と最大のメソ細孔容積を持ち、BPGC のより大きなメソ細孔容積により、凝縮後の凝縮液が十分な多孔質容積を確保します。 BPGC のメソ細孔容積が大きいため、エタノールの吸収後に凝縮液が膨張するのに十分なスペースが確保されます。 CIQTEK BET 表面積およびポロシメトリー アナライザー EASY-V 322...
もっと見るCIQTEK X バンド ベンチトップ 電子常磁性共鳴分光計 EPR200M は 、シンガポール国立大学 (NUS) の Chen Xiaoyuan 教授のグループに無事納入されました。 CIQTEK EPR は診断と治療の統合研究を支援します 1905 年に設立されたシンガポール国立大学 (NUS) は、シンガポールで最も優れた研究大学の 1 つであり、化学と材料科学の分野では世界のトップの研究者にランクされています。GSI Quantum EPR200Mを導入した Chen Xiaoyuan 教授のグループの主な研究方向は、診断と治療の統合です。この研究では、ナノテクノロジーを利用して低分子薬物、ペプチド、mRNAなどの薬物を正確に送達する研究を行っています。マルチモーダルイメージング技術と組み合わせることで、生体内での薬物の組織分布と薬物動態プロセスを評価し、最終的には診断と薬物動態の統合を実現します。処理。 プロジェクトチームの責任者であるJianhua Zou氏は次のように述べています。GuoyiのQuantum EPR200M製品の安定性、感度指数、データ精度は、プロジェクトチームの実験テストの要件を完全に満たしています。チームは、この装置を使用して、単斜晶系酸素、スーパーオキシドラジカル、ヒドロキシルラジカルなどのさまざまな活性酸素種の生成または除去をテストします。これらのラジカル物質の信号パラメーターの変化を測定することにより、EPR は動的に、および活性酸素種を除去する抗酸化物質の有効性をテストするために、生体サンプル中の抗酸化物質の濃度の増減を定量的に監視します。 XバンドベンチトップEPR分光法 | EPR200M EPR200Mは、新しく設計および設計されたベンチトップ電子常磁性共鳴分光計です。高感度、高安定性、さまざまな実験シナリオに基づいて、すべての EPR 実験ユーザーに、コスト効率が高く、メンテナンスの手間がかからず、シンプルで使いやすいエクスペリエンスを提供します。
もっと見るCIQTEKは、韓国における電子常磁性共鳴 (EPR または ESR) 装置の販売代理店として BK Instruments Inc. を発表できることを嬉しく思います 。BK Instruments Inc. は、実験分析装置および関連消耗品およびサービスを提供する韓国の会社です。 BKインスツルメント株式会社は、1999年1月の設立以来、一時的な利益に執着することなく、顧客満足を最優先に常に努力を続けてまいりました。次世代環境分野のリーダーとして、科学技術の発展をリードしていきます。
もっと見る最近、貴州大学のZhichao Jinの研究チームは、ヘテロ原子アニオンを超電子供与体として使用してフリーラジカル反応を開始し、3-置換ベンゾフランを容易に合成できることを実証しました。得られた製品は、有機合成や農薬開発において幅広い用途が期待できます。 この結果は、「ヘテロ原子中心の超電子供与体とのラジカル反応を通じたベンゾフラン誘導体への容易なアクセス」というタイトルで権威ある雑誌 Nature Communications に掲載されました。研究では、CIQTEK の X バンド連続波電子常磁性共鳴分光計 EPR200-Plus を使用して、反応系内でのフリーラジカル種の生成を確認しました。 ベンゾフランは、ヒトの臨床薬に広く見られる 100 個の主要な環状構造の 1 つです。特に、3-置換ベンゾフランは、生物学的活性が証明されている多くの天然および非天然薬物分子のコア構造として頻繁に見られます。幅広い官能性を有する 3-置換ベンゾフラン誘導体を迅速かつ選択的に得るためには、新しく効率的な合成法の開発が不可欠です。単一電子移動反応は、官能化された 3-置換ベンゾフランを構築する最も効率的な方法の 1 つであり、単一電子移動プロセスの成功には適切な電子供与体が不可欠です。しかし、これまでのところ、ヘテロ原子中心アニオンを単一電子移動反応の直接超電子供与体として使用する研究は報告されていません。 貴州大学のZhichao Jinの研究チームは、研究でフリーラジカル反応を開始するためのSEDとしてヘテロ原子アニオンを利用することにより、さまざまなヘテロ原子官能基を持つ3-置換ベンゾフラン分子を容易に合成した。異なる置換パターンを持つホスフィン、チオール、アニリンはこの分子間フリーラジカルカップリング反応で良好に機能し、ヘテロ原子官能基を持つ 3-置換ベンゾフラン生成物は中程度から優れた収率を示しました。 図1 |生物活性、ラジカル反応のための 3-置換ベンゾフランと SED の合成。 a 3-置換ベンゾフラン構造を含む市販薬。 b 3-置換ベンゾフランにアクセスするための典型的な方法。 c 代表的な有機低分子 SED。 d 3-ヘテロアルキルベンゾフラン合成用の SED としてのヘテロ原子アニオン。 反応系におけるフリーラジカル種の生成は、EPR 技術 (CIQTEK EPR200-Plus) を使用した研究で確認されました。 25℃ DME 中の 1a、HPPh2、および LDA の混合物の EPR スペクトルは、g = 2.0023 でフェニル g 因子と同様のシグナルを示しました。 図4 |反応混合物と対照実験の EPR スペク
もっと見るピットコン カンファレンスおよびエキスポ 2024 ピットコンは、実験科学に関するダイナミックで国境を越えた会議および博覧会であり、分析研究と科学機器の最新の進歩を発表する場であり、継続的な教育と科学向上の機会のプラットフォームです。 Pitcon は、物理的または化学的分析を実行する、分析手法を開発する、またはこれらの科学者を管理する実験装置を開発、購入、販売するすべての人を対象としています。 ·ブース 1638 でお会いしましょう: EPR と走査型電子顕微鏡に基づくソリューションを紹介する当社のブースでお会いできることを楽しみにしています。電子顕微鏡の実物を展示しておりますので、ぜひ専門家と相談しながらお試しください。 日付: 2024 年 2 月 24 日から 28 日まで 場所:サンディエゴ コンベンション センター、111 Harbor Dr、サンディエゴ、カリフォルニア州
もっと見るAPS 2024 米国物理学会 3 月会議は、世界中から 13,000 人を超える物理学者が集まり、自分たちの研究を紹介し、他の人とつながり、画期的な物理研究を発見する科学研究会議です。 2024 年は、APS 125 周年を祝う特別な週にご参加ください。 · ブース 635 でお会いできることを楽しみにしています。NV センター技術に基づく量子 NV 走査型顕微鏡と電子常磁性共鳴分光計に関するソリューションを紹介します。ぜひこの機会に当社の専門家にご相談ください。 日程: 2024年3月4日~7日 場所:ミネアポリスコンベンション センター、1301 2nd Ave S、ミネアポリス、アメリカ合衆国
もっと見る