日本語
English
français
Deutsch
русский
italiano
español
português
العربية
한국의
简体中文
材料科学
最近、中国科学院上海マイクロシステム情報技術研究所の王浩民率いる研究チームは、ジグザググラフェンナノリボン(zGNR)の磁性を、 CIQTEK 走査型窒素空孔顕微鏡 (SNVM) 。 研究チームはこれまでの研究を基に、六方晶窒化ホウ素(hBN)に金属粒子をあらかじめエッチングして配向した原子溝を形成し、気相触媒化学蒸着(CVD)法を用いて溝内にキラルグラフェンナノリボンを制御的に作製し、hBN格子に埋め込まれた約9nm幅のzGNRサンプルを得た。SNVMと磁気伝導測定を組み合わせることで、研究チームは実験においてその固有磁性を直接確認した。この画期的な発見は、グラフェンベースのスピンエレクトロニクスデバイス開発の確固たる基盤を築くものである。「六方晶窒化ホウ素格子に埋め込まれたジグザググラフェンナノリボンの磁性の兆候」と題された関連研究成果は、権威ある学術誌に掲載されている。 「自然素材」。 グラフェンは、ユニークな二次元材料として、従来の磁性材料におけるd/f軌道電子の局在磁気特性とは根本的に異なるp軌道電子の磁気特性を示し、純粋炭素系磁性の探究に向けた新たな研究方向を切り開きます。ジグザググラフェンナノリボン(zGNR)は、フェルミ準位付近に特異な磁気電子状態を有する可能性があり、スピンエレクトロニクスデバイスの分野で大きな可能性を秘めていると考えられています。しかし、zGNRの磁性を電気輸送法で検出するには、多くの課題があります。例えば、下から組み立てたナノリボンは、デバイスを安定的に製造するには長さが短すぎることがよくあります。さらに、zGNRエッジの化学反応性が高いため、不安定性やドーピングの不均一性が生じる可能性があります。さらに、より細いzGNRでは、エッジ状態の強い反強磁性結合により、磁気信号を電気的に検出することが困難になる場合があります。これらの要因が、zGNRの磁性を直接検出することを妨げています。 hBN格子に埋め込まれたZGNRは、高いエッジ安定性と固有の電場特性を示し、zGNRの磁性を検出するのに理想的な条件を作り出します。この研究では、研究チームは CIQTEK 室温SNVM zGNR の磁気信号を室温で直接観察します。 図1: 六方晶窒化ホウ素格子に埋め込まれたzGNRの磁気測定 走査 窒素空孔顕微鏡 作製した約9ナノメートル幅のzGNRトランジスタは、電気伝導測定において高い導電性と弾道伝導特性を示した。磁場の影響下では、デバイスは顕著な異方性磁気抵抗を示し、4Kで約175Ωの磁気抵
に基づいて d ual-beam e レクトロン m icroscope DB550 独立して制御されています Ciqtek 、 t ransmission e レクトロン m icroscope(TEM) 28nmプロセスノードチップのナノスケールサンプル準備が正常に達成されました。 TEM検証は、各構造の重要な次元を明確に分析し、半導体プロセスの欠陥分析と収量の改善のための国内の精密検出ソリューションを提供します。
金属材料は、現代の産業で不可欠な役割を果たしており、そのパフォーマンスは製品の品質とサービス生活に直接影響します。 材料科学の継続的な開発により、金属材料の顕微鏡構造と組成分析には、より高い要件が提案されています。 高度な特性化ツールとして、走査型電子顕微鏡(SEM) 高解像度の表面形態情報を提供し、元素組成決定のための分光分析技術と組み合わせることができ、金属材料研究の重要なツールになります。 この記事は、金属材料の特性評価におけるSEMテクノロジーの適用について議論し、関連する研究の参照とガイダンスを提供することを目的としています。 電子顕微鏡の基本原理(SEM)走査型電子顕微鏡の動作原理は、電子ビームとサンプル表面との間の相互作用に基づいています。 高エネルギー電子ビームがサンプル表面をスキャンすると、二次電子、後方散乱電子、特性X線などを含むさまざまな信号が生成されます。これらの信号は、対応する検出器によって収集され、サンプルの表面形態画像または元素分布マップを形成するために処理されます。 金属材料のSEMサンプル調製微細構造分析: Ciqtek EMは、研究者が観察するのに役立つ高解像度の画像を提供します 金属の微細構造と、穀物のサイズ、形状、位相などの複合材料の微細構造を分析する 分布、および欠陥(たとえば、亀裂、および包含)。 これは、関係を理解するために重要です 材料特性と処理技術の間。 αβチタン合金熱の影響を受けたゾーンは、溶接接合部で最も脆弱な領域です。 微細構造の変化を研究します 溶接領域の特性は、溶接の問題を解決し、溶接品質を改善するために非常に重要です。 構成分析:EDSまたはWDSシステムが装備されている、 ciqtek sem 定性的と 定量的元素組成分析。 これは、分布を研究するために非常に重要です 合金要素のパターンと材料特性への影響。 edsによるエレメンタルライン分析SEMとEDS分析を組み合わせることにより、 組成の変化と 不純物の要素分布溶接領域を観察できます。 障害分析: 骨折、腐食、その他の形態の損傷などの故障後、金属で発生します 複合材料Ciqtek SEMは、メカニズム障害を分析するための重要なツールです。 調べることによって 骨折表面、腐食生成物など、故障の根本原因を識別し、提供することができます 材料の信頼性と寿命を改善するための洞察。 2A12アルミニウム合金成分の故障2A12アルミニウム合金はさまざまな降水段階を示します。 形態学
CIQTEK FIB-SEM 実践デモンストレーション 集束イオンビーム走査型電子顕微鏡 (FIB-SEM)は、欠陥診断、修復、イオン注入、その場処理、マスク修復、エッチング、集積回路設計の修正、チップデバイス製造などのさまざまな用途に不可欠です。 、マスクレス処理、ナノ構造作製、複雑なナノパターニング、材料の三次元イメージングと分析、超高感度表面分析、表面改質、透過型電子顕微鏡による試料作製。 CIQTEK は、独立して制御可能な
CIQTEK FIB-SEM 実践デモンストレーション 集束イオンビーム走査型電子顕微鏡 (FIB-SEM)は、欠陥診断、修復、イオン注入、その場処理、マスク修復、エッチング、集積回路設計の変更、チップデバイスの製造、マスクレス処理、ナノ構造の製造、複雑なナノパターニング、材料の三次元イメージングと分析、超高感度表面分析、表面改質、透過型電子顕微鏡による試料作製。 CIQTEK は、FIB-SEMDB550を導入しました。これは、独立して制御可能な集束機能を備えた電界放射型走査電子顕微鏡 (FE-SEM) を備えています。イオン ビーム (FIB) カラム.これは、エレガントで汎用性の高いナノスケール分析および試料調製ツールであり、「スーパートンネル」電子光学技術、低収差、非透過性を採用しています。ナノスケール分析を保証する低電圧および高分解能機能を備えた磁気対物レンズ設計。 イオンカラムは、非常に安定した高品質のイオンビームを備えた Ga+ 液体金属イオン源を促進し、ナノ加工能力を保証します。 DB550 には、ナノマニピュレーター、ガス注入システム、対物レンズ用の電気的汚染防止機構、およびユーザーフレンドリーな GUIソフトウェアが統合されており、オールインワンのナノスケール分析および製造ワークステーション。 DB550 の卓越したパフォーマンスを紹介するために、CIQTEK は 「CIQTEK FIB-SEM 実践デモンストレーション」と呼ばれる特別イベントを計画しました。 このプログラムでは、この最先端の装置の広範なアプリケーションをデモンストレーションするビデオを提示します。材料科学、半導体産業、生物医学研究などの分野。視聴者は、DB550 の動作原理を理解し、その見事なマイクロスケール画像を鑑賞し、科学研究と産業開発に対するこの技術の重要な意味を探究します。 フェライト・マルテンサイト鋼の透過試験片の作製 FIB-SEM DB550 CIQTEK
金属骨折とは? 金属が外力を受けて破壊すると、「破面」または「破面」と呼ばれる 2 つの一致する面が残ります。これらの表面の形状と外観には、破壊プロセスに関する重要な情報が含まれています。 ⑥破断面の形態を観察・研究することで、破壊の原因、性状、様式、メカニズムを解析することができます。また、破壊時の応力状態と亀裂の伝播速度についての洞察も得られます。 「現場」調査と同様に、破面には破壊の全過程が保存されます。したがって、破面の検査と分析は、金属破壊を研究する上で重要なステップおよび方法です。 走査型電子顕微鏡は、被写界深度が深く分解能が高いため、破壊解析の分野で広く使用されています。 金属破壊解析における走査電子顕微鏡pe の応用 金属の破壊はさまざまな故障モードで発生する可能性があります。破壊前の変形レベルに基づいて、脆性破壊、延性破壊、または両方の混合に分類できます。さまざまな破壊モードは特徴的な顕微鏡形態を示し、CIQTEK走査電子顕微鏡の特性評価は、研究者が破面を迅速に分析するのに役立ちます。 延性破壊 延性破壊とは、部品が大幅に変形した後に発生する破壊を指し、その主な特徴は、明らかな巨視的な塑性変形が発生することです。巨視的な外観は、ディンプルを特徴とする繊維状の破面を備えたカップコーンまたはせん断状です。図 1 に示すように、マイクロスケールでは、破面はディンプルと呼ばれる小さなカップ状の微細孔で構成されます。ディンプルは、材料内の局所的な塑性変形によって形成される微小空洞です。それらは核形成、成長、合体を繰り返し、最終的には破壊に至り、破壊面に痕跡を残します [32]。 図 1: 金属の延性破断面 / 10kV / インレンズ 脆性破壊 脆性破壊とは、コンポーネントに大きな塑性変形を伴わずに発生する破壊を指します。材料は破断する前に塑性変形をほとんどまたはまったく受けません。巨視的には結晶質に見えますが、微視的には粒界破壊、へき開破壊、または準へき開破壊を示すことがあります。図2に示すように、金属の脆性と延性が混合した破面です。延性破壊領域では、顕著なディンプルが観察されます。脆性破壊領域では、異なる結晶方位に沿って粒界脆性破壊が発生します。マイクロスケールでは、破断面は明確な粒界と 3 次元の外観を持つ、粒子の複数のファセットを示します。滑らかで特徴のない形態が粒界で観察されることがよくあります。結晶粒が粗大な場
要約: チタンホワイトとして広く知られている二酸化チタンは、塗料、プラスチック、ゴム、製紙、インク、繊維などのさまざまな産業で広く使用されている重要な白色無機顔料です。研究によると、物理的性質は、また、光触媒性能、隠蔽力、分散性などの二酸化チタンの化学的特性は、その比表面積や細孔構造と密接に関係しています。 二酸化チタンの比表面積や細孔径分布などのパラメーターを正確に特徴付けるために静的ガス吸着技術を使用すると、その品質を評価し、特定の用途での性能を最適化することができ、それによってさまざまな分野での有効性をさらに高めることができます。 二酸化チタンについて: 二酸化チタンは、主に二酸化チタンから構成される重要な白色無機顔料です。色、粒径、比表面積、分散性、耐候性などのパラメータがさまざまな用途における二酸化チタンの性能を決定しますが、比表面積は重要なパラメータの 1 つです。比表面積と細孔サイズの特性評価は、二酸化チタンの分散性を理解するのに役立ち、それによってコーティングやプラスチックなどの用途での性能を最適化できます。高い比表面積を有する二酸化チタンは、通常、より強い隠蔽力と着色力を示します[15]。 さらに、研究では、二酸化チタンを触媒担体として使用する場合、細孔径が大きいほど活性成分の分散が向上し、全体的な触媒活性が向上する一方、細孔径が小さいほど活性部位の密度が増加し、触媒活性が向上することが示されています。反応効率の向上につながります。したがって、二酸化チタンの細孔構造を調節することにより、触媒担体としての性能を向上させることができる [19] 。 要約すると、比表面積と細孔径分布の特性評価は、さまざまな用途における二酸化チタンの性能の評価と最適化に役立つだけでなく、製造プロセスにおける品質管理の重要な手段としても機能します。 チタンの正確な特性評価二酸化物を使用すると、その独特の特性をより深く理解し、利用して、さまざまな応用分野の要件を満たすことができます。 二酸化チタンの特性評価におけるガス吸着技術の応用例: 1.脱硝触媒用二酸化チタンの比表面積と細孔径分布の特性評価 選択接触還元 (SCR) は、一般的に適用され研究されている排ガス脱窒技術の 1 つです。触媒は、その性能が窒素酸化物の除去効率に直接影響するため、SCR 技術において重要な役割を果たします。二酸化チタンは脱硝触媒の担体材料として機能し、
分子ふるいは、分子ふるい特性を持つ人工的に合成された水和アルミノケイ酸塩または天然ゼオライトです。均一なサイズの細孔と、整然としたチャネルと空洞が構造に備わっています。さまざまな細孔サイズの分子ふるいは、さまざまなサイズと形状の分子を分離できます。吸着、触媒、イオン交換などの機能を備えており、石油化学工学、環境保護、生物医学、エネルギーなどのさまざまな分野で大きな潜在的用途があります。 1925年にゼオライトの分子分離効果が初めて報告され、ゼオライトは「分子ふるい」という新しい名前を獲得しました。しかし、ゼオライト分子ふるいの細孔サイズが小さいため、その応用範囲が限られていたため、研究者はより大きな細孔サイズのメソポーラス材料の開発に目を向けました。メソポーラス材料(細孔サイズが2〜50 nmの多孔質材料の一種)は、表面積が非常に大きく、細孔構造が規則的に整っており、細孔サイズを連続的に調整できます。メソポーラス材料は、登場以来、学際的なフロンティアの1つとなっています。 分子ふるいの場合、粒子サイズと粒子サイズ分布は、特に触媒研究において、製品プロセスの性能と有用性に直接影響を与える重要な物理的パラメータです。分子ふるいの結晶粒径、細孔構造、および調製条件は、触媒の性能に大きな影響を与えます。したがって、分子ふるいの結晶形態の変化の調査、その形状の正確な制御、および触媒性能の調整と強化は非常に重要であり、常に分子ふるい研究の重要な側面となっています。走査型電子顕微鏡は、分子ふるいの構造と性能の関係を研究するための重要な顕微鏡情報を提供し、分子ふるいの合成の最適化と性能制御のガイドに役立ちます。 ZSM-5 分子ふるいは MFI 構造を持っています。異なる結晶形態を持つ MFI 型分子ふるい触媒の生成物の選択性、反応性、安定性は、形態に応じて異なる場合があります。 図1(a) MFIスケルトントポロジー 以下は、CIQTEK高解像度電界放出走査電子顕微鏡 SEM5000Xを使用して撮影した ZSM-5 分子ふるいの画像です。 図1(b) ZSM-5分子ふるい/500V/インレンズ SBA-15 は、 2 次元の六角形の細孔構造を持つ一般的なシリコンベースのメソポーラス材料で、細孔サイズは通常 3 ~ 10 nm です。ほとんどのメソポーラス材料は非導電性であり、一般的に使用されるコーティングの前処理方法 (Pt または Au を使用) によりナノスケールの細孔が塞がれ、微細構造の特性
伝言を残す
家
製品
チャット
接触